Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-258x-400x^{2}-10x=45
Multiply x and x to get x^{2}.
-257x-400x^{2}-10x=45
Combine x and -258x to get -257x.
-267x-400x^{2}=45
Combine -257x and -10x to get -267x.
-267x-400x^{2}-45=0
Subtract 45 from both sides.
-400x^{2}-267x-45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-267\right)±\sqrt{\left(-267\right)^{2}-4\left(-400\right)\left(-45\right)}}{2\left(-400\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -400 for a, -267 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-267\right)±\sqrt{71289-4\left(-400\right)\left(-45\right)}}{2\left(-400\right)}
Square -267.
x=\frac{-\left(-267\right)±\sqrt{71289+1600\left(-45\right)}}{2\left(-400\right)}
Multiply -4 times -400.
x=\frac{-\left(-267\right)±\sqrt{71289-72000}}{2\left(-400\right)}
Multiply 1600 times -45.
x=\frac{-\left(-267\right)±\sqrt{-711}}{2\left(-400\right)}
Add 71289 to -72000.
x=\frac{-\left(-267\right)±3\sqrt{79}i}{2\left(-400\right)}
Take the square root of -711.
x=\frac{267±3\sqrt{79}i}{2\left(-400\right)}
The opposite of -267 is 267.
x=\frac{267±3\sqrt{79}i}{-800}
Multiply 2 times -400.
x=\frac{267+3\sqrt{79}i}{-800}
Now solve the equation x=\frac{267±3\sqrt{79}i}{-800} when ± is plus. Add 267 to 3i\sqrt{79}.
x=\frac{-3\sqrt{79}i-267}{800}
Divide 267+3i\sqrt{79} by -800.
x=\frac{-3\sqrt{79}i+267}{-800}
Now solve the equation x=\frac{267±3\sqrt{79}i}{-800} when ± is minus. Subtract 3i\sqrt{79} from 267.
x=\frac{-267+3\sqrt{79}i}{800}
Divide 267-3i\sqrt{79} by -800.
x=\frac{-3\sqrt{79}i-267}{800} x=\frac{-267+3\sqrt{79}i}{800}
The equation is now solved.
x-258x-400x^{2}-10x=45
Multiply x and x to get x^{2}.
-257x-400x^{2}-10x=45
Combine x and -258x to get -257x.
-267x-400x^{2}=45
Combine -257x and -10x to get -267x.
-400x^{2}-267x=45
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-400x^{2}-267x}{-400}=\frac{45}{-400}
Divide both sides by -400.
x^{2}+\left(-\frac{267}{-400}\right)x=\frac{45}{-400}
Dividing by -400 undoes the multiplication by -400.
x^{2}+\frac{267}{400}x=\frac{45}{-400}
Divide -267 by -400.
x^{2}+\frac{267}{400}x=-\frac{9}{80}
Reduce the fraction \frac{45}{-400} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{267}{400}x+\left(\frac{267}{800}\right)^{2}=-\frac{9}{80}+\left(\frac{267}{800}\right)^{2}
Divide \frac{267}{400}, the coefficient of the x term, by 2 to get \frac{267}{800}. Then add the square of \frac{267}{800} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{267}{400}x+\frac{71289}{640000}=-\frac{9}{80}+\frac{71289}{640000}
Square \frac{267}{800} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{267}{400}x+\frac{71289}{640000}=-\frac{711}{640000}
Add -\frac{9}{80} to \frac{71289}{640000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{267}{800}\right)^{2}=-\frac{711}{640000}
Factor x^{2}+\frac{267}{400}x+\frac{71289}{640000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{267}{800}\right)^{2}}=\sqrt{-\frac{711}{640000}}
Take the square root of both sides of the equation.
x+\frac{267}{800}=\frac{3\sqrt{79}i}{800} x+\frac{267}{800}=-\frac{3\sqrt{79}i}{800}
Simplify.
x=\frac{-267+3\sqrt{79}i}{800} x=\frac{-3\sqrt{79}i-267}{800}
Subtract \frac{267}{800} from both sides of the equation.