x - ( 25 \% x - ( 40 \% ) x ) ( 10 \% x ) = 45
Solve for x
x = \frac{10 \sqrt{370} - 100}{3} \approx 30.784613539
x=\frac{-10\sqrt{370}-100}{3}\approx -97.451280206
Graph
Share
Copied to clipboard
x-\left(\frac{1}{4}x-\frac{40}{100}x\right)\times \frac{10}{100}x=45
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
x-\left(\frac{1}{4}x-\frac{2}{5}x\right)\times \frac{10}{100}x=45
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
x-\left(-\frac{3}{20}x\times \frac{10}{100}x\right)=45
Combine \frac{1}{4}x and -\frac{2}{5}x to get -\frac{3}{20}x.
x-\left(-\frac{3}{20}x\times \frac{1}{10}x\right)=45
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
x-\frac{-3}{20\times 10}xx=45
Multiply -\frac{3}{20} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
x-\frac{-3}{200}xx=45
Do the multiplications in the fraction \frac{-3}{20\times 10}.
x-\left(-\frac{3}{200}xx\right)=45
Fraction \frac{-3}{200} can be rewritten as -\frac{3}{200} by extracting the negative sign.
x-\left(-\frac{3}{200}x^{2}\right)=45
Multiply x and x to get x^{2}.
x+\frac{3}{200}x^{2}=45
The opposite of -\frac{3}{200}x^{2} is \frac{3}{200}x^{2}.
x+\frac{3}{200}x^{2}-45=0
Subtract 45 from both sides.
\frac{3}{200}x^{2}+x-45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{3}{200}\left(-45\right)}}{2\times \frac{3}{200}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{200} for a, 1 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{3}{200}\left(-45\right)}}{2\times \frac{3}{200}}
Square 1.
x=\frac{-1±\sqrt{1-\frac{3}{50}\left(-45\right)}}{2\times \frac{3}{200}}
Multiply -4 times \frac{3}{200}.
x=\frac{-1±\sqrt{1+\frac{27}{10}}}{2\times \frac{3}{200}}
Multiply -\frac{3}{50} times -45.
x=\frac{-1±\sqrt{\frac{37}{10}}}{2\times \frac{3}{200}}
Add 1 to \frac{27}{10}.
x=\frac{-1±\frac{\sqrt{370}}{10}}{2\times \frac{3}{200}}
Take the square root of \frac{37}{10}.
x=\frac{-1±\frac{\sqrt{370}}{10}}{\frac{3}{100}}
Multiply 2 times \frac{3}{200}.
x=\frac{\frac{\sqrt{370}}{10}-1}{\frac{3}{100}}
Now solve the equation x=\frac{-1±\frac{\sqrt{370}}{10}}{\frac{3}{100}} when ± is plus. Add -1 to \frac{\sqrt{370}}{10}.
x=\frac{10\sqrt{370}-100}{3}
Divide -1+\frac{\sqrt{370}}{10} by \frac{3}{100} by multiplying -1+\frac{\sqrt{370}}{10} by the reciprocal of \frac{3}{100}.
x=\frac{-\frac{\sqrt{370}}{10}-1}{\frac{3}{100}}
Now solve the equation x=\frac{-1±\frac{\sqrt{370}}{10}}{\frac{3}{100}} when ± is minus. Subtract \frac{\sqrt{370}}{10} from -1.
x=\frac{-10\sqrt{370}-100}{3}
Divide -1-\frac{\sqrt{370}}{10} by \frac{3}{100} by multiplying -1-\frac{\sqrt{370}}{10} by the reciprocal of \frac{3}{100}.
x=\frac{10\sqrt{370}-100}{3} x=\frac{-10\sqrt{370}-100}{3}
The equation is now solved.
x-\left(\frac{1}{4}x-\frac{40}{100}x\right)\times \frac{10}{100}x=45
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
x-\left(\frac{1}{4}x-\frac{2}{5}x\right)\times \frac{10}{100}x=45
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
x-\left(-\frac{3}{20}x\times \frac{10}{100}x\right)=45
Combine \frac{1}{4}x and -\frac{2}{5}x to get -\frac{3}{20}x.
x-\left(-\frac{3}{20}x\times \frac{1}{10}x\right)=45
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
x-\frac{-3}{20\times 10}xx=45
Multiply -\frac{3}{20} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
x-\frac{-3}{200}xx=45
Do the multiplications in the fraction \frac{-3}{20\times 10}.
x-\left(-\frac{3}{200}xx\right)=45
Fraction \frac{-3}{200} can be rewritten as -\frac{3}{200} by extracting the negative sign.
x-\left(-\frac{3}{200}x^{2}\right)=45
Multiply x and x to get x^{2}.
x+\frac{3}{200}x^{2}=45
The opposite of -\frac{3}{200}x^{2} is \frac{3}{200}x^{2}.
\frac{3}{200}x^{2}+x=45
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{200}x^{2}+x}{\frac{3}{200}}=\frac{45}{\frac{3}{200}}
Divide both sides of the equation by \frac{3}{200}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{1}{\frac{3}{200}}x=\frac{45}{\frac{3}{200}}
Dividing by \frac{3}{200} undoes the multiplication by \frac{3}{200}.
x^{2}+\frac{200}{3}x=\frac{45}{\frac{3}{200}}
Divide 1 by \frac{3}{200} by multiplying 1 by the reciprocal of \frac{3}{200}.
x^{2}+\frac{200}{3}x=3000
Divide 45 by \frac{3}{200} by multiplying 45 by the reciprocal of \frac{3}{200}.
x^{2}+\frac{200}{3}x+\left(\frac{100}{3}\right)^{2}=3000+\left(\frac{100}{3}\right)^{2}
Divide \frac{200}{3}, the coefficient of the x term, by 2 to get \frac{100}{3}. Then add the square of \frac{100}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=3000+\frac{10000}{9}
Square \frac{100}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{37000}{9}
Add 3000 to \frac{10000}{9}.
\left(x+\frac{100}{3}\right)^{2}=\frac{37000}{9}
Factor x^{2}+\frac{200}{3}x+\frac{10000}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{100}{3}\right)^{2}}=\sqrt{\frac{37000}{9}}
Take the square root of both sides of the equation.
x+\frac{100}{3}=\frac{10\sqrt{370}}{3} x+\frac{100}{3}=-\frac{10\sqrt{370}}{3}
Simplify.
x=\frac{10\sqrt{370}-100}{3} x=\frac{-10\sqrt{370}-100}{3}
Subtract \frac{100}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}