x - ( 25 \% ) - ( 4 \% ) ( x ) - ( 10 \% x ) = 45
Solve for x
x = \frac{4525}{86} = 52\frac{53}{86} \approx 52.61627907
Graph
Share
Copied to clipboard
x-\frac{1}{4}-\frac{4}{100}x-\frac{10}{100}x=45
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
x-\frac{1}{4}-\frac{1}{25}x-\frac{10}{100}x=45
Reduce the fraction \frac{4}{100} to lowest terms by extracting and canceling out 4.
\frac{24}{25}x-\frac{1}{4}-\frac{10}{100}x=45
Combine x and -\frac{1}{25}x to get \frac{24}{25}x.
\frac{24}{25}x-\frac{1}{4}-\frac{1}{10}x=45
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\frac{43}{50}x-\frac{1}{4}=45
Combine \frac{24}{25}x and -\frac{1}{10}x to get \frac{43}{50}x.
\frac{43}{50}x=45+\frac{1}{4}
Add \frac{1}{4} to both sides.
\frac{43}{50}x=\frac{180}{4}+\frac{1}{4}
Convert 45 to fraction \frac{180}{4}.
\frac{43}{50}x=\frac{180+1}{4}
Since \frac{180}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{43}{50}x=\frac{181}{4}
Add 180 and 1 to get 181.
x=\frac{181}{4}\times \frac{50}{43}
Multiply both sides by \frac{50}{43}, the reciprocal of \frac{43}{50}.
x=\frac{181\times 50}{4\times 43}
Multiply \frac{181}{4} times \frac{50}{43} by multiplying numerator times numerator and denominator times denominator.
x=\frac{9050}{172}
Do the multiplications in the fraction \frac{181\times 50}{4\times 43}.
x=\frac{4525}{86}
Reduce the fraction \frac{9050}{172} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}