Solve for x
x=6
Graph
Share
Copied to clipboard
-\sqrt{x-2}=4-x
Subtract x from both sides of the equation.
\left(-\sqrt{x-2}\right)^{2}=\left(4-x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(4-x\right)^{2}
Expand \left(-\sqrt{x-2}\right)^{2}.
1\left(\sqrt{x-2}\right)^{2}=\left(4-x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(x-2\right)=\left(4-x\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x-2=\left(4-x\right)^{2}
Use the distributive property to multiply 1 by x-2.
x-2=16-8x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
x-2-16=-8x+x^{2}
Subtract 16 from both sides.
x-18=-8x+x^{2}
Subtract 16 from -2 to get -18.
x-18+8x=x^{2}
Add 8x to both sides.
9x-18=x^{2}
Combine x and 8x to get 9x.
9x-18-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+9x-18=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=9 ab=-\left(-18\right)=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=6 b=3
The solution is the pair that gives sum 9.
\left(-x^{2}+6x\right)+\left(3x-18\right)
Rewrite -x^{2}+9x-18 as \left(-x^{2}+6x\right)+\left(3x-18\right).
-x\left(x-6\right)+3\left(x-6\right)
Factor out -x in the first and 3 in the second group.
\left(x-6\right)\left(-x+3\right)
Factor out common term x-6 by using distributive property.
x=6 x=3
To find equation solutions, solve x-6=0 and -x+3=0.
6-\sqrt{6-2}=4
Substitute 6 for x in the equation x-\sqrt{x-2}=4.
4=4
Simplify. The value x=6 satisfies the equation.
3-\sqrt{3-2}=4
Substitute 3 for x in the equation x-\sqrt{x-2}=4.
2=4
Simplify. The value x=3 does not satisfy the equation.
x=6
Equation -\sqrt{x-2}=4-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}