Solve for y (complex solution)
\left\{\begin{matrix}y=x^{3}+1\text{, }&x\neq -1\text{ and }x\neq \frac{-\sqrt{3}i+1}{2}\text{ and }x\neq \frac{1+\sqrt{3}i}{2}\\y\neq 0\text{, }&x=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=x^{3}+1\text{, }&x\neq -1\\y\neq 0\text{, }&x=0\end{matrix}\right.
Solve for x (complex solution)
x=\sqrt[3]{y-1}
x=0
x=e^{\frac{2\pi i}{3}}\sqrt[3]{y-1}
x=e^{\frac{4\pi i}{3}}\sqrt[3]{y-1}\text{, }y\neq 0
Solve for x
x=\sqrt[3]{y-1}
x=0\text{, }y\neq 0
Graph
Quiz
Algebra
5 problems similar to:
x - \frac { x } { y } = x ^ { 2 } \times \frac { x ^ { 2 } } { y }
Share
Copied to clipboard
yx-x=x^{2}x^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
yx-x=x^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
yx=x^{4}+x
Add x to both sides.
xy=x^{4}+x
The equation is in standard form.
\frac{xy}{x}=\frac{x^{4}+x}{x}
Divide both sides by x.
y=\frac{x^{4}+x}{x}
Dividing by x undoes the multiplication by x.
y=x^{3}+1
Divide x^{4}+x by x.
y=x^{3}+1\text{, }y\neq 0
Variable y cannot be equal to 0.
yx-x=x^{2}x^{2}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
yx-x=x^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
yx=x^{4}+x
Add x to both sides.
xy=x^{4}+x
The equation is in standard form.
\frac{xy}{x}=\frac{x^{4}+x}{x}
Divide both sides by x.
y=\frac{x^{4}+x}{x}
Dividing by x undoes the multiplication by x.
y=x^{3}+1
Divide x^{4}+x by x.
y=x^{3}+1\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}