Solve for x
x\leq -\frac{11}{5}
Graph
Share
Copied to clipboard
10x-2\left(7x+1\right)\geq 10-\left(1-x\right)
Multiply both sides of the equation by 10, the least common multiple of 5,10. Since 10 is positive, the inequality direction remains the same.
10x-14x-2\geq 10-\left(1-x\right)
Use the distributive property to multiply -2 by 7x+1.
-4x-2\geq 10-\left(1-x\right)
Combine 10x and -14x to get -4x.
-4x-2\geq 10-1-\left(-x\right)
To find the opposite of 1-x, find the opposite of each term.
-4x-2\geq 10-1+x
The opposite of -x is x.
-4x-2\geq 9+x
Subtract 1 from 10 to get 9.
-4x-2-x\geq 9
Subtract x from both sides.
-5x-2\geq 9
Combine -4x and -x to get -5x.
-5x\geq 9+2
Add 2 to both sides.
-5x\geq 11
Add 9 and 2 to get 11.
x\leq -\frac{11}{5}
Divide both sides by -5. Since -5 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}