Solve for x
x\leq 6
Graph
Share
Copied to clipboard
14x-7\left(3x-8\right)\geq 2\times 2\left(13-x\right)-14
Multiply both sides of the equation by 14, the least common multiple of 2,7. Since 14 is positive, the inequality direction remains the same.
14x-21x+56\geq 2\times 2\left(13-x\right)-14
Use the distributive property to multiply -7 by 3x-8.
-7x+56\geq 2\times 2\left(13-x\right)-14
Combine 14x and -21x to get -7x.
-7x+56\geq 4\left(13-x\right)-14
Multiply 2 and 2 to get 4.
-7x+56\geq 52-4x-14
Use the distributive property to multiply 4 by 13-x.
-7x+56\geq 38-4x
Subtract 14 from 52 to get 38.
-7x+56+4x\geq 38
Add 4x to both sides.
-3x+56\geq 38
Combine -7x and 4x to get -3x.
-3x\geq 38-56
Subtract 56 from both sides.
-3x\geq -18
Subtract 56 from 38 to get -18.
x\leq \frac{-18}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x\leq 6
Divide -18 by -3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}