Solve for x
x\geq \frac{19}{28}
Graph
Share
Copied to clipboard
20x-4\left(2x-1\right)\leq 40x-15
Multiply both sides of the equation by 20, the least common multiple of 5,4. Since 20 is positive, the inequality direction remains the same.
20x-8x+4\leq 40x-15
Use the distributive property to multiply -4 by 2x-1.
12x+4\leq 40x-15
Combine 20x and -8x to get 12x.
12x+4-40x\leq -15
Subtract 40x from both sides.
-28x+4\leq -15
Combine 12x and -40x to get -28x.
-28x\leq -15-4
Subtract 4 from both sides.
-28x\leq -19
Subtract 4 from -15 to get -19.
x\geq \frac{-19}{-28}
Divide both sides by -28. Since -28 is negative, the inequality direction is changed.
x\geq \frac{19}{28}
Fraction \frac{-19}{-28} can be simplified to \frac{19}{28} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}