Evaluate
\frac{-x^{2}+2xy-16x-30y}{x+2y}
Expand
\frac{-x^{2}+2xy-16x-30y}{x+2y}
Share
Copied to clipboard
\frac{x\left(x+2y\right)}{x+2y}-\frac{2\left(x^{2}-y\right)}{x+2y}-4^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+2y}{x+2y}.
\frac{x\left(x+2y\right)-2\left(x^{2}-y\right)}{x+2y}-4^{2}
Since \frac{x\left(x+2y\right)}{x+2y} and \frac{2\left(x^{2}-y\right)}{x+2y} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2xy-2x^{2}+2y}{x+2y}-4^{2}
Do the multiplications in x\left(x+2y\right)-2\left(x^{2}-y\right).
\frac{-x^{2}+2xy+2y}{x+2y}-4^{2}
Combine like terms in x^{2}+2xy-2x^{2}+2y.
\frac{-x^{2}+2xy+2y}{x+2y}-16
Calculate 4 to the power of 2 and get 16.
\frac{-x^{2}+2xy+2y}{x+2y}-\frac{16\left(x+2y\right)}{x+2y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{x+2y}{x+2y}.
\frac{-x^{2}+2xy+2y-16\left(x+2y\right)}{x+2y}
Since \frac{-x^{2}+2xy+2y}{x+2y} and \frac{16\left(x+2y\right)}{x+2y} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+2xy+2y-16x-32y}{x+2y}
Do the multiplications in -x^{2}+2xy+2y-16\left(x+2y\right).
\frac{-x^{2}+2xy-30y-16x}{x+2y}
Combine like terms in -x^{2}+2xy+2y-16x-32y.
\frac{x\left(x+2y\right)}{x+2y}-\frac{2\left(x^{2}-y\right)}{x+2y}-4^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+2y}{x+2y}.
\frac{x\left(x+2y\right)-2\left(x^{2}-y\right)}{x+2y}-4^{2}
Since \frac{x\left(x+2y\right)}{x+2y} and \frac{2\left(x^{2}-y\right)}{x+2y} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2xy-2x^{2}+2y}{x+2y}-4^{2}
Do the multiplications in x\left(x+2y\right)-2\left(x^{2}-y\right).
\frac{-x^{2}+2xy+2y}{x+2y}-4^{2}
Combine like terms in x^{2}+2xy-2x^{2}+2y.
\frac{-x^{2}+2xy+2y}{x+2y}-16
Calculate 4 to the power of 2 and get 16.
\frac{-x^{2}+2xy+2y}{x+2y}-\frac{16\left(x+2y\right)}{x+2y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{x+2y}{x+2y}.
\frac{-x^{2}+2xy+2y-16\left(x+2y\right)}{x+2y}
Since \frac{-x^{2}+2xy+2y}{x+2y} and \frac{16\left(x+2y\right)}{x+2y} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+2xy+2y-16x-32y}{x+2y}
Do the multiplications in -x^{2}+2xy+2y-16\left(x+2y\right).
\frac{-x^{2}+2xy-30y-16x}{x+2y}
Combine like terms in -x^{2}+2xy+2y-16x-32y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}