Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x^{2}-6x+9\right)-\left(x-3\right)^{3}=3\left(x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{3}-6x^{2}+9x-\left(x-3\right)^{3}=3\left(x-3\right)
Use the distributive property to multiply x by x^{2}-6x+9.
x^{3}-6x^{2}+9x-\left(x^{3}-9x^{2}+27x-27\right)=3\left(x-3\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-3\right)^{3}.
x^{3}-6x^{2}+9x-x^{3}+9x^{2}-27x+27=3\left(x-3\right)
To find the opposite of x^{3}-9x^{2}+27x-27, find the opposite of each term.
-6x^{2}+9x+9x^{2}-27x+27=3\left(x-3\right)
Combine x^{3} and -x^{3} to get 0.
3x^{2}+9x-27x+27=3\left(x-3\right)
Combine -6x^{2} and 9x^{2} to get 3x^{2}.
3x^{2}-18x+27=3\left(x-3\right)
Combine 9x and -27x to get -18x.
3x^{2}-18x+27=3x-9
Use the distributive property to multiply 3 by x-3.
3x^{2}-18x+27-3x=-9
Subtract 3x from both sides.
3x^{2}-21x+27=-9
Combine -18x and -3x to get -21x.
3x^{2}-21x+27+9=0
Add 9 to both sides.
3x^{2}-21x+36=0
Add 27 and 9 to get 36.
x^{2}-7x+12=0
Divide both sides by 3.
a+b=-7 ab=1\times 12=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-4 b=-3
The solution is the pair that gives sum -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Rewrite x^{2}-7x+12 as \left(x^{2}-4x\right)+\left(-3x+12\right).
x\left(x-4\right)-3\left(x-4\right)
Factor out x in the first and -3 in the second group.
\left(x-4\right)\left(x-3\right)
Factor out common term x-4 by using distributive property.
x=4 x=3
To find equation solutions, solve x-4=0 and x-3=0.
x\left(x^{2}-6x+9\right)-\left(x-3\right)^{3}=3\left(x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{3}-6x^{2}+9x-\left(x-3\right)^{3}=3\left(x-3\right)
Use the distributive property to multiply x by x^{2}-6x+9.
x^{3}-6x^{2}+9x-\left(x^{3}-9x^{2}+27x-27\right)=3\left(x-3\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-3\right)^{3}.
x^{3}-6x^{2}+9x-x^{3}+9x^{2}-27x+27=3\left(x-3\right)
To find the opposite of x^{3}-9x^{2}+27x-27, find the opposite of each term.
-6x^{2}+9x+9x^{2}-27x+27=3\left(x-3\right)
Combine x^{3} and -x^{3} to get 0.
3x^{2}+9x-27x+27=3\left(x-3\right)
Combine -6x^{2} and 9x^{2} to get 3x^{2}.
3x^{2}-18x+27=3\left(x-3\right)
Combine 9x and -27x to get -18x.
3x^{2}-18x+27=3x-9
Use the distributive property to multiply 3 by x-3.
3x^{2}-18x+27-3x=-9
Subtract 3x from both sides.
3x^{2}-21x+27=-9
Combine -18x and -3x to get -21x.
3x^{2}-21x+27+9=0
Add 9 to both sides.
3x^{2}-21x+36=0
Add 27 and 9 to get 36.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 3\times 36}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -21 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 3\times 36}}{2\times 3}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-12\times 36}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-21\right)±\sqrt{441-432}}{2\times 3}
Multiply -12 times 36.
x=\frac{-\left(-21\right)±\sqrt{9}}{2\times 3}
Add 441 to -432.
x=\frac{-\left(-21\right)±3}{2\times 3}
Take the square root of 9.
x=\frac{21±3}{2\times 3}
The opposite of -21 is 21.
x=\frac{21±3}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{21±3}{6} when ± is plus. Add 21 to 3.
x=4
Divide 24 by 6.
x=\frac{18}{6}
Now solve the equation x=\frac{21±3}{6} when ± is minus. Subtract 3 from 21.
x=3
Divide 18 by 6.
x=4 x=3
The equation is now solved.
x\left(x^{2}-6x+9\right)-\left(x-3\right)^{3}=3\left(x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{3}-6x^{2}+9x-\left(x-3\right)^{3}=3\left(x-3\right)
Use the distributive property to multiply x by x^{2}-6x+9.
x^{3}-6x^{2}+9x-\left(x^{3}-9x^{2}+27x-27\right)=3\left(x-3\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-3\right)^{3}.
x^{3}-6x^{2}+9x-x^{3}+9x^{2}-27x+27=3\left(x-3\right)
To find the opposite of x^{3}-9x^{2}+27x-27, find the opposite of each term.
-6x^{2}+9x+9x^{2}-27x+27=3\left(x-3\right)
Combine x^{3} and -x^{3} to get 0.
3x^{2}+9x-27x+27=3\left(x-3\right)
Combine -6x^{2} and 9x^{2} to get 3x^{2}.
3x^{2}-18x+27=3\left(x-3\right)
Combine 9x and -27x to get -18x.
3x^{2}-18x+27=3x-9
Use the distributive property to multiply 3 by x-3.
3x^{2}-18x+27-3x=-9
Subtract 3x from both sides.
3x^{2}-21x+27=-9
Combine -18x and -3x to get -21x.
3x^{2}-21x=-9-27
Subtract 27 from both sides.
3x^{2}-21x=-36
Subtract 27 from -9 to get -36.
\frac{3x^{2}-21x}{3}=-\frac{36}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{21}{3}\right)x=-\frac{36}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-7x=-\frac{36}{3}
Divide -21 by 3.
x^{2}-7x=-12
Divide -36 by 3.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
Add -12 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
Simplify.
x=4 x=3
Add \frac{7}{2} to both sides of the equation.