Solve for x
x=\frac{\sqrt{17}-5}{2}\approx -0.438447187
x=\frac{-\sqrt{17}-5}{2}\approx -4.561552813
Graph
Quiz
Quadratic Equation
5 problems similar to:
x ( x + 3 ) ( x - 3 ) = ( x ^ { 2 } + 2 ) ( x + 2 ) - x
Share
Copied to clipboard
\left(x^{2}+3x\right)\left(x-3\right)=\left(x^{2}+2\right)\left(x+2\right)-x
Use the distributive property to multiply x by x+3.
x^{3}-9x=\left(x^{2}+2\right)\left(x+2\right)-x
Use the distributive property to multiply x^{2}+3x by x-3 and combine like terms.
x^{3}-9x=x^{3}+2x^{2}+2x+4-x
Use the distributive property to multiply x^{2}+2 by x+2.
x^{3}-9x=x^{3}+2x^{2}+x+4
Combine 2x and -x to get x.
x^{3}-9x-x^{3}=2x^{2}+x+4
Subtract x^{3} from both sides.
-9x=2x^{2}+x+4
Combine x^{3} and -x^{3} to get 0.
-9x-2x^{2}=x+4
Subtract 2x^{2} from both sides.
-9x-2x^{2}-x=4
Subtract x from both sides.
-10x-2x^{2}=4
Combine -9x and -x to get -10x.
-10x-2x^{2}-4=0
Subtract 4 from both sides.
-2x^{2}-10x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -10 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+8\left(-4\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-10\right)±\sqrt{100-32}}{2\left(-2\right)}
Multiply 8 times -4.
x=\frac{-\left(-10\right)±\sqrt{68}}{2\left(-2\right)}
Add 100 to -32.
x=\frac{-\left(-10\right)±2\sqrt{17}}{2\left(-2\right)}
Take the square root of 68.
x=\frac{10±2\sqrt{17}}{2\left(-2\right)}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{17}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{17}+10}{-4}
Now solve the equation x=\frac{10±2\sqrt{17}}{-4} when ± is plus. Add 10 to 2\sqrt{17}.
x=\frac{-\sqrt{17}-5}{2}
Divide 10+2\sqrt{17} by -4.
x=\frac{10-2\sqrt{17}}{-4}
Now solve the equation x=\frac{10±2\sqrt{17}}{-4} when ± is minus. Subtract 2\sqrt{17} from 10.
x=\frac{\sqrt{17}-5}{2}
Divide 10-2\sqrt{17} by -4.
x=\frac{-\sqrt{17}-5}{2} x=\frac{\sqrt{17}-5}{2}
The equation is now solved.
\left(x^{2}+3x\right)\left(x-3\right)=\left(x^{2}+2\right)\left(x+2\right)-x
Use the distributive property to multiply x by x+3.
x^{3}-9x=\left(x^{2}+2\right)\left(x+2\right)-x
Use the distributive property to multiply x^{2}+3x by x-3 and combine like terms.
x^{3}-9x=x^{3}+2x^{2}+2x+4-x
Use the distributive property to multiply x^{2}+2 by x+2.
x^{3}-9x=x^{3}+2x^{2}+x+4
Combine 2x and -x to get x.
x^{3}-9x-x^{3}=2x^{2}+x+4
Subtract x^{3} from both sides.
-9x=2x^{2}+x+4
Combine x^{3} and -x^{3} to get 0.
-9x-2x^{2}=x+4
Subtract 2x^{2} from both sides.
-9x-2x^{2}-x=4
Subtract x from both sides.
-10x-2x^{2}=4
Combine -9x and -x to get -10x.
-2x^{2}-10x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-10x}{-2}=\frac{4}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{10}{-2}\right)x=\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+5x=\frac{4}{-2}
Divide -10 by -2.
x^{2}+5x=-2
Divide 4 by -2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-2+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-2+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{17}{4}
Add -2 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{17}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{17}}{2} x+\frac{5}{2}=-\frac{\sqrt{17}}{2}
Simplify.
x=\frac{\sqrt{17}-5}{2} x=\frac{-\sqrt{17}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}