Solve for f
\left\{\begin{matrix}f=-\frac{mx+9x+my-2y}{z\left(6-m\right)}\text{, }&m\neq 6\text{ and }z\neq 0\\f\in \mathrm{R}\text{, }&\left(m=6\text{ and }x=-\frac{4y}{15}\right)\text{ or }\left(m=-9\text{ and }z=0\text{ and }y=0\right)\text{ or }\left(x=-\frac{y\left(m-2\right)}{m+9}\text{ and }m\neq -9\text{ and }z=0\text{ and }m\neq 6\right)\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{9x-2y+6fz}{x+y-fz}\text{, }&x\neq fz-y\\m\in \mathrm{R}\text{, }&x=-\frac{4fz}{11}\text{ and }y=\frac{15fz}{11}\end{matrix}\right.
Share
Copied to clipboard
xm+9x+y\left(m-2\right)=z\left(m-6\right)f
Use the distributive property to multiply x by m+9.
xm+9x+ym-2y=z\left(m-6\right)f
Use the distributive property to multiply y by m-2.
xm+9x+ym-2y=\left(zm-6z\right)f
Use the distributive property to multiply z by m-6.
xm+9x+ym-2y=zmf-6zf
Use the distributive property to multiply zm-6z by f.
zmf-6zf=xm+9x+ym-2y
Swap sides so that all variable terms are on the left hand side.
\left(zm-6z\right)f=xm+9x+ym-2y
Combine all terms containing f.
\left(mz-6z\right)f=mx+9x+my-2y
The equation is in standard form.
\frac{\left(mz-6z\right)f}{mz-6z}=\frac{mx+9x+my-2y}{mz-6z}
Divide both sides by zm-6z.
f=\frac{mx+9x+my-2y}{mz-6z}
Dividing by zm-6z undoes the multiplication by zm-6z.
f=\frac{mx+9x+my-2y}{z\left(m-6\right)}
Divide xm+9x+ym-2y by zm-6z.
xm+9x+y\left(m-2\right)=z\left(m-6\right)f
Use the distributive property to multiply x by m+9.
xm+9x+ym-2y=z\left(m-6\right)f
Use the distributive property to multiply y by m-2.
xm+9x+ym-2y=\left(zm-6z\right)f
Use the distributive property to multiply z by m-6.
xm+9x+ym-2y=zmf-6zf
Use the distributive property to multiply zm-6z by f.
xm+9x+ym-2y-zmf=-6zf
Subtract zmf from both sides.
xm+ym-2y-zmf=-6zf-9x
Subtract 9x from both sides.
xm+ym-zmf=-6zf-9x+2y
Add 2y to both sides.
\left(x+y-zf\right)m=-6zf-9x+2y
Combine all terms containing m.
\left(x+y-fz\right)m=-9x+2y-6fz
The equation is in standard form.
\frac{\left(x+y-fz\right)m}{x+y-fz}=\frac{-9x+2y-6fz}{x+y-fz}
Divide both sides by x+y-fz.
m=\frac{-9x+2y-6fz}{x+y-fz}
Dividing by x+y-fz undoes the multiplication by x+y-fz.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}