Solve for x
x=\left(\frac{22}{41}-\frac{34}{41}i\right)y+\left(-\frac{13}{41}-\frac{88}{41}i\right)
Solve for y
y=\left(\frac{11}{20}+\frac{17}{20}i\right)x+\left(-\frac{33}{20}+\frac{29}{20}i\right)
Share
Copied to clipboard
x\left(4-5i\right)=-12-7i-y\left(2+6i\right)
Subtract y\left(2+6i\right) from both sides.
x\left(4-5i\right)=-12-7i+\left(-2-6i\right)y
Multiply -1 and 2+6i to get -2-6i.
\left(4-5i\right)x=\left(-2-6i\right)y+\left(-12-7i\right)
The equation is in standard form.
\frac{\left(4-5i\right)x}{4-5i}=\frac{\left(-2-6i\right)y+\left(-12-7i\right)}{4-5i}
Divide both sides by 4-5i.
x=\frac{\left(-2-6i\right)y+\left(-12-7i\right)}{4-5i}
Dividing by 4-5i undoes the multiplication by 4-5i.
x=\left(\frac{22}{41}-\frac{34}{41}i\right)y+\left(-\frac{13}{41}-\frac{88}{41}i\right)
Divide -12-7i+\left(-2-6i\right)y by 4-5i.
y\left(2+6i\right)=-12-7i-x\left(4-5i\right)
Subtract x\left(4-5i\right) from both sides.
y\left(2+6i\right)=-12-7i+\left(-4+5i\right)x
Multiply -1 and 4-5i to get -4+5i.
\left(2+6i\right)y=\left(-4+5i\right)x+\left(-12-7i\right)
The equation is in standard form.
\frac{\left(2+6i\right)y}{2+6i}=\frac{\left(-4+5i\right)x+\left(-12-7i\right)}{2+6i}
Divide both sides by 2+6i.
y=\frac{\left(-4+5i\right)x+\left(-12-7i\right)}{2+6i}
Dividing by 2+6i undoes the multiplication by 2+6i.
y=\left(\frac{11}{20}+\frac{17}{20}i\right)x+\left(-\frac{33}{20}+\frac{29}{20}i\right)
Divide -12-7i+\left(-4+5i\right)x by 2+6i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}