Solve for x
x = -\frac{9}{2} = -4\frac{1}{2} = -4.5
x=2
Graph
Share
Copied to clipboard
2x^{2}+9x-4x-18=0
Use the distributive property to multiply x by 2x+9.
2x^{2}+5x-18=0
Combine 9x and -4x to get 5x.
a+b=5 ab=2\left(-18\right)=-36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
-1,36 -2,18 -3,12 -4,9 -6,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Calculate the sum for each pair.
a=-4 b=9
The solution is the pair that gives sum 5.
\left(2x^{2}-4x\right)+\left(9x-18\right)
Rewrite 2x^{2}+5x-18 as \left(2x^{2}-4x\right)+\left(9x-18\right).
2x\left(x-2\right)+9\left(x-2\right)
Factor out 2x in the first and 9 in the second group.
\left(x-2\right)\left(2x+9\right)
Factor out common term x-2 by using distributive property.
x=2 x=-\frac{9}{2}
To find equation solutions, solve x-2=0 and 2x+9=0.
2x^{2}+9x-4x-18=0
Use the distributive property to multiply x by 2x+9.
2x^{2}+5x-18=0
Combine 9x and -4x to get 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-18\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 5 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\left(-18\right)}}{2\times 2}
Square 5.
x=\frac{-5±\sqrt{25-8\left(-18\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-5±\sqrt{25+144}}{2\times 2}
Multiply -8 times -18.
x=\frac{-5±\sqrt{169}}{2\times 2}
Add 25 to 144.
x=\frac{-5±13}{2\times 2}
Take the square root of 169.
x=\frac{-5±13}{4}
Multiply 2 times 2.
x=\frac{8}{4}
Now solve the equation x=\frac{-5±13}{4} when ± is plus. Add -5 to 13.
x=2
Divide 8 by 4.
x=-\frac{18}{4}
Now solve the equation x=\frac{-5±13}{4} when ± is minus. Subtract 13 from -5.
x=-\frac{9}{2}
Reduce the fraction \frac{-18}{4} to lowest terms by extracting and canceling out 2.
x=2 x=-\frac{9}{2}
The equation is now solved.
2x^{2}+9x-4x-18=0
Use the distributive property to multiply x by 2x+9.
2x^{2}+5x-18=0
Combine 9x and -4x to get 5x.
2x^{2}+5x=18
Add 18 to both sides. Anything plus zero gives itself.
\frac{2x^{2}+5x}{2}=\frac{18}{2}
Divide both sides by 2.
x^{2}+\frac{5}{2}x=\frac{18}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{5}{2}x=9
Divide 18 by 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=9+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=9+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{169}{16}
Add 9 to \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=\frac{169}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{13}{4} x+\frac{5}{4}=-\frac{13}{4}
Simplify.
x=2 x=-\frac{9}{2}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}