Solve for x
x=20
x=45
Graph
Share
Copied to clipboard
160x-2x^{2}-30x-500=1300
Use the distributive property to multiply x by 160-2x.
130x-2x^{2}-500=1300
Combine 160x and -30x to get 130x.
130x-2x^{2}-500-1300=0
Subtract 1300 from both sides.
130x-2x^{2}-1800=0
Subtract 1300 from -500 to get -1800.
-2x^{2}+130x-1800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-130±\sqrt{130^{2}-4\left(-2\right)\left(-1800\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 130 for b, and -1800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-130±\sqrt{16900-4\left(-2\right)\left(-1800\right)}}{2\left(-2\right)}
Square 130.
x=\frac{-130±\sqrt{16900+8\left(-1800\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-130±\sqrt{16900-14400}}{2\left(-2\right)}
Multiply 8 times -1800.
x=\frac{-130±\sqrt{2500}}{2\left(-2\right)}
Add 16900 to -14400.
x=\frac{-130±50}{2\left(-2\right)}
Take the square root of 2500.
x=\frac{-130±50}{-4}
Multiply 2 times -2.
x=-\frac{80}{-4}
Now solve the equation x=\frac{-130±50}{-4} when ± is plus. Add -130 to 50.
x=20
Divide -80 by -4.
x=-\frac{180}{-4}
Now solve the equation x=\frac{-130±50}{-4} when ± is minus. Subtract 50 from -130.
x=45
Divide -180 by -4.
x=20 x=45
The equation is now solved.
160x-2x^{2}-30x-500=1300
Use the distributive property to multiply x by 160-2x.
130x-2x^{2}-500=1300
Combine 160x and -30x to get 130x.
130x-2x^{2}=1300+500
Add 500 to both sides.
130x-2x^{2}=1800
Add 1300 and 500 to get 1800.
-2x^{2}+130x=1800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+130x}{-2}=\frac{1800}{-2}
Divide both sides by -2.
x^{2}+\frac{130}{-2}x=\frac{1800}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-65x=\frac{1800}{-2}
Divide 130 by -2.
x^{2}-65x=-900
Divide 1800 by -2.
x^{2}-65x+\left(-\frac{65}{2}\right)^{2}=-900+\left(-\frac{65}{2}\right)^{2}
Divide -65, the coefficient of the x term, by 2 to get -\frac{65}{2}. Then add the square of -\frac{65}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-65x+\frac{4225}{4}=-900+\frac{4225}{4}
Square -\frac{65}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-65x+\frac{4225}{4}=\frac{625}{4}
Add -900 to \frac{4225}{4}.
\left(x-\frac{65}{2}\right)^{2}=\frac{625}{4}
Factor x^{2}-65x+\frac{4225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{65}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Take the square root of both sides of the equation.
x-\frac{65}{2}=\frac{25}{2} x-\frac{65}{2}=-\frac{25}{2}
Simplify.
x=45 x=20
Add \frac{65}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}