Solve for x
x = \frac{\sqrt{4921} + 11}{48} \approx 1.690621659
x=\frac{11-\sqrt{4921}}{48}\approx -1.232288326
Graph
Share
Copied to clipboard
12x^{2}+7x-3x\left(20x-5\right)=-100
Use the distributive property to multiply x by 12x+7.
12x^{2}+7x-3x\left(20x-5\right)+100=0
Add 100 to both sides.
12x^{2}+7x-60x^{2}+15x+100=0
Use the distributive property to multiply -3x by 20x-5.
-48x^{2}+7x+15x+100=0
Combine 12x^{2} and -60x^{2} to get -48x^{2}.
-48x^{2}+22x+100=0
Combine 7x and 15x to get 22x.
x=\frac{-22±\sqrt{22^{2}-4\left(-48\right)\times 100}}{2\left(-48\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -48 for a, 22 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-22±\sqrt{484-4\left(-48\right)\times 100}}{2\left(-48\right)}
Square 22.
x=\frac{-22±\sqrt{484+192\times 100}}{2\left(-48\right)}
Multiply -4 times -48.
x=\frac{-22±\sqrt{484+19200}}{2\left(-48\right)}
Multiply 192 times 100.
x=\frac{-22±\sqrt{19684}}{2\left(-48\right)}
Add 484 to 19200.
x=\frac{-22±2\sqrt{4921}}{2\left(-48\right)}
Take the square root of 19684.
x=\frac{-22±2\sqrt{4921}}{-96}
Multiply 2 times -48.
x=\frac{2\sqrt{4921}-22}{-96}
Now solve the equation x=\frac{-22±2\sqrt{4921}}{-96} when ± is plus. Add -22 to 2\sqrt{4921}.
x=\frac{11-\sqrt{4921}}{48}
Divide -22+2\sqrt{4921} by -96.
x=\frac{-2\sqrt{4921}-22}{-96}
Now solve the equation x=\frac{-22±2\sqrt{4921}}{-96} when ± is minus. Subtract 2\sqrt{4921} from -22.
x=\frac{\sqrt{4921}+11}{48}
Divide -22-2\sqrt{4921} by -96.
x=\frac{11-\sqrt{4921}}{48} x=\frac{\sqrt{4921}+11}{48}
The equation is now solved.
12x^{2}+7x-3x\left(20x-5\right)=-100
Use the distributive property to multiply x by 12x+7.
12x^{2}+7x-60x^{2}+15x=-100
Use the distributive property to multiply -3x by 20x-5.
-48x^{2}+7x+15x=-100
Combine 12x^{2} and -60x^{2} to get -48x^{2}.
-48x^{2}+22x=-100
Combine 7x and 15x to get 22x.
\frac{-48x^{2}+22x}{-48}=-\frac{100}{-48}
Divide both sides by -48.
x^{2}+\frac{22}{-48}x=-\frac{100}{-48}
Dividing by -48 undoes the multiplication by -48.
x^{2}-\frac{11}{24}x=-\frac{100}{-48}
Reduce the fraction \frac{22}{-48} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{11}{24}x=\frac{25}{12}
Reduce the fraction \frac{-100}{-48} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{11}{24}x+\left(-\frac{11}{48}\right)^{2}=\frac{25}{12}+\left(-\frac{11}{48}\right)^{2}
Divide -\frac{11}{24}, the coefficient of the x term, by 2 to get -\frac{11}{48}. Then add the square of -\frac{11}{48} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{24}x+\frac{121}{2304}=\frac{25}{12}+\frac{121}{2304}
Square -\frac{11}{48} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{24}x+\frac{121}{2304}=\frac{4921}{2304}
Add \frac{25}{12} to \frac{121}{2304} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{48}\right)^{2}=\frac{4921}{2304}
Factor x^{2}-\frac{11}{24}x+\frac{121}{2304}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{48}\right)^{2}}=\sqrt{\frac{4921}{2304}}
Take the square root of both sides of the equation.
x-\frac{11}{48}=\frac{\sqrt{4921}}{48} x-\frac{11}{48}=-\frac{\sqrt{4921}}{48}
Simplify.
x=\frac{\sqrt{4921}+11}{48} x=\frac{11-\sqrt{4921}}{48}
Add \frac{11}{48} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}