Solve for x
x\geq -\frac{83}{70}
Graph
Share
Copied to clipboard
x\left(-\frac{5}{3}\right)\leq \frac{17}{14}+\frac{16}{21}
Add \frac{16}{21} to both sides.
x\left(-\frac{5}{3}\right)\leq \frac{51}{42}+\frac{32}{42}
Least common multiple of 14 and 21 is 42. Convert \frac{17}{14} and \frac{16}{21} to fractions with denominator 42.
x\left(-\frac{5}{3}\right)\leq \frac{51+32}{42}
Since \frac{51}{42} and \frac{32}{42} have the same denominator, add them by adding their numerators.
x\left(-\frac{5}{3}\right)\leq \frac{83}{42}
Add 51 and 32 to get 83.
x\geq \frac{83}{42}\left(-\frac{3}{5}\right)
Multiply both sides by -\frac{3}{5}, the reciprocal of -\frac{5}{3}. Since -\frac{5}{3} is negative, the inequality direction is changed.
x\geq \frac{83\left(-3\right)}{42\times 5}
Multiply \frac{83}{42} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{-249}{210}
Do the multiplications in the fraction \frac{83\left(-3\right)}{42\times 5}.
x\geq -\frac{83}{70}
Reduce the fraction \frac{-249}{210} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}