Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

40x-x^{2}=381
Use the distributive property to multiply x by 40-x.
40x-x^{2}-381=0
Subtract 381 from both sides.
-x^{2}+40x-381=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-381\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 40 for b, and -381 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-381\right)}}{2\left(-1\right)}
Square 40.
x=\frac{-40±\sqrt{1600+4\left(-381\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-40±\sqrt{1600-1524}}{2\left(-1\right)}
Multiply 4 times -381.
x=\frac{-40±\sqrt{76}}{2\left(-1\right)}
Add 1600 to -1524.
x=\frac{-40±2\sqrt{19}}{2\left(-1\right)}
Take the square root of 76.
x=\frac{-40±2\sqrt{19}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{19}-40}{-2}
Now solve the equation x=\frac{-40±2\sqrt{19}}{-2} when ± is plus. Add -40 to 2\sqrt{19}.
x=20-\sqrt{19}
Divide -40+2\sqrt{19} by -2.
x=\frac{-2\sqrt{19}-40}{-2}
Now solve the equation x=\frac{-40±2\sqrt{19}}{-2} when ± is minus. Subtract 2\sqrt{19} from -40.
x=\sqrt{19}+20
Divide -40-2\sqrt{19} by -2.
x=20-\sqrt{19} x=\sqrt{19}+20
The equation is now solved.
40x-x^{2}=381
Use the distributive property to multiply x by 40-x.
-x^{2}+40x=381
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+40x}{-1}=\frac{381}{-1}
Divide both sides by -1.
x^{2}+\frac{40}{-1}x=\frac{381}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-40x=\frac{381}{-1}
Divide 40 by -1.
x^{2}-40x=-381
Divide 381 by -1.
x^{2}-40x+\left(-20\right)^{2}=-381+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-381+400
Square -20.
x^{2}-40x+400=19
Add -381 to 400.
\left(x-20\right)^{2}=19
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{19}
Take the square root of both sides of the equation.
x-20=\sqrt{19} x-20=-\sqrt{19}
Simplify.
x=\sqrt{19}+20 x=20-\sqrt{19}
Add 20 to both sides of the equation.