Solve for y (complex solution)
\left\{\begin{matrix}\\y=x+\frac{11}{3}\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=x+\frac{11}{3}\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
x = -\frac{11}{3} = -3\frac{2}{3} = -3.6666666666666665
x=0
Graph
Share
Copied to clipboard
3xy+x-3x\left(x+4\right)=0
Use the distributive property to multiply x by 3y+1.
3xy+x=0+3x\left(x+4\right)
Add 3x\left(x+4\right) to both sides.
3xy+x=0+3x^{2}+12x
Use the distributive property to multiply 3x by x+4.
3xy+x=3x^{2}+12x
Anything plus zero gives itself.
3xy=3x^{2}+12x-x
Subtract x from both sides.
3xy=3x^{2}+11x
Combine 12x and -x to get 11x.
\frac{3xy}{3x}=\frac{x\left(3x+11\right)}{3x}
Divide both sides by 3x.
y=\frac{x\left(3x+11\right)}{3x}
Dividing by 3x undoes the multiplication by 3x.
y=x+\frac{11}{3}
Divide x\left(11+3x\right) by 3x.
3xy+x-3x\left(x+4\right)=0
Use the distributive property to multiply x by 3y+1.
3xy+x=0+3x\left(x+4\right)
Add 3x\left(x+4\right) to both sides.
3xy+x=0+3x^{2}+12x
Use the distributive property to multiply 3x by x+4.
3xy+x=3x^{2}+12x
Anything plus zero gives itself.
3xy=3x^{2}+12x-x
Subtract x from both sides.
3xy=3x^{2}+11x
Combine 12x and -x to get 11x.
\frac{3xy}{3x}=\frac{x\left(3x+11\right)}{3x}
Divide both sides by 3x.
y=\frac{x\left(3x+11\right)}{3x}
Dividing by 3x undoes the multiplication by 3x.
y=x+\frac{11}{3}
Divide x\left(11+3x\right) by 3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}