Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

48x-3x^{2}=240
Use the distributive property to multiply x by 48-3x.
48x-3x^{2}-240=0
Subtract 240 from both sides.
-3x^{2}+48x-240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48±\sqrt{48^{2}-4\left(-3\right)\left(-240\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 48 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\left(-3\right)\left(-240\right)}}{2\left(-3\right)}
Square 48.
x=\frac{-48±\sqrt{2304+12\left(-240\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-48±\sqrt{2304-2880}}{2\left(-3\right)}
Multiply 12 times -240.
x=\frac{-48±\sqrt{-576}}{2\left(-3\right)}
Add 2304 to -2880.
x=\frac{-48±24i}{2\left(-3\right)}
Take the square root of -576.
x=\frac{-48±24i}{-6}
Multiply 2 times -3.
x=\frac{-48+24i}{-6}
Now solve the equation x=\frac{-48±24i}{-6} when ± is plus. Add -48 to 24i.
x=8-4i
Divide -48+24i by -6.
x=\frac{-48-24i}{-6}
Now solve the equation x=\frac{-48±24i}{-6} when ± is minus. Subtract 24i from -48.
x=8+4i
Divide -48-24i by -6.
x=8-4i x=8+4i
The equation is now solved.
48x-3x^{2}=240
Use the distributive property to multiply x by 48-3x.
-3x^{2}+48x=240
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+48x}{-3}=\frac{240}{-3}
Divide both sides by -3.
x^{2}+\frac{48}{-3}x=\frac{240}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-16x=\frac{240}{-3}
Divide 48 by -3.
x^{2}-16x=-80
Divide 240 by -3.
x^{2}-16x+\left(-8\right)^{2}=-80+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-80+64
Square -8.
x^{2}-16x+64=-16
Add -80 to 64.
\left(x-8\right)^{2}=-16
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{-16}
Take the square root of both sides of the equation.
x-8=4i x-8=-4i
Simplify.
x=8+4i x=8-4i
Add 8 to both sides of the equation.