Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+5x=36
Use the distributive property to multiply x by 2x+5.
2x^{2}+5x-36=0
Subtract 36 from both sides.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-36\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 5 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\left(-36\right)}}{2\times 2}
Square 5.
x=\frac{-5±\sqrt{25-8\left(-36\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-5±\sqrt{25+288}}{2\times 2}
Multiply -8 times -36.
x=\frac{-5±\sqrt{313}}{2\times 2}
Add 25 to 288.
x=\frac{-5±\sqrt{313}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{313}-5}{4}
Now solve the equation x=\frac{-5±\sqrt{313}}{4} when ± is plus. Add -5 to \sqrt{313}.
x=\frac{-\sqrt{313}-5}{4}
Now solve the equation x=\frac{-5±\sqrt{313}}{4} when ± is minus. Subtract \sqrt{313} from -5.
x=\frac{\sqrt{313}-5}{4} x=\frac{-\sqrt{313}-5}{4}
The equation is now solved.
2x^{2}+5x=36
Use the distributive property to multiply x by 2x+5.
\frac{2x^{2}+5x}{2}=\frac{36}{2}
Divide both sides by 2.
x^{2}+\frac{5}{2}x=\frac{36}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{5}{2}x=18
Divide 36 by 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=18+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=18+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{313}{16}
Add 18 to \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=\frac{313}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{313}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{\sqrt{313}}{4} x+\frac{5}{4}=-\frac{\sqrt{313}}{4}
Simplify.
x=\frac{\sqrt{313}-5}{4} x=\frac{-\sqrt{313}-5}{4}
Subtract \frac{5}{4} from both sides of the equation.