Solve for x
x=5\sqrt{2}y-7y+5\sqrt{2}-6
Solve for y
y=5\sqrt{2}\left(x-1\right)+7x-8
Graph
Share
Copied to clipboard
x\sqrt{3+2\sqrt{2}}=\sqrt{18-8\sqrt{2}}+y\sqrt{17-12\sqrt{2}}
Add y\sqrt{17-12\sqrt{2}} to both sides.
\sqrt{2\sqrt{2}+3}x=\sqrt{17-12\sqrt{2}}y+\sqrt{18-8\sqrt{2}}
The equation is in standard form.
\frac{\sqrt{2\sqrt{2}+3}x}{\sqrt{2\sqrt{2}+3}}=\frac{\left(3-2\sqrt{2}\right)y+4-\sqrt{2}}{\sqrt{2\sqrt{2}+3}}
Divide both sides by \sqrt{3+2\sqrt{2}}.
x=\frac{\left(3-2\sqrt{2}\right)y+4-\sqrt{2}}{\sqrt{2\sqrt{2}+3}}
Dividing by \sqrt{3+2\sqrt{2}} undoes the multiplication by \sqrt{3+2\sqrt{2}}.
x=\left(\sqrt{2}-1\right)\left(\left(3-2\sqrt{2}\right)y+4-\sqrt{2}\right)
Divide 4-\sqrt{2}+y\left(3-2\sqrt{2}\right) by \sqrt{3+2\sqrt{2}}.
-y\sqrt{17-12\sqrt{2}}=\sqrt{18-8\sqrt{2}}-x\sqrt{3+2\sqrt{2}}
Subtract x\sqrt{3+2\sqrt{2}} from both sides.
\left(-\sqrt{17-12\sqrt{2}}\right)y=-\sqrt{2\sqrt{2}+3}x+\sqrt{18-8\sqrt{2}}
The equation is in standard form.
\frac{\left(-\sqrt{17-12\sqrt{2}}\right)y}{-\sqrt{17-12\sqrt{2}}}=\frac{-\left(\sqrt{2}+1\right)x+4-\sqrt{2}}{-\sqrt{17-12\sqrt{2}}}
Divide both sides by -\sqrt{17-12\sqrt{2}}.
y=\frac{-\left(\sqrt{2}+1\right)x+4-\sqrt{2}}{-\sqrt{17-12\sqrt{2}}}
Dividing by -\sqrt{17-12\sqrt{2}} undoes the multiplication by -\sqrt{17-12\sqrt{2}}.
y=-\left(2\sqrt{2}+3\right)\left(-\sqrt{2}x-x+4-\sqrt{2}\right)
Divide 4-\sqrt{2}-x\left(\sqrt{2}+1\right) by -\sqrt{17-12\sqrt{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}