Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\sqrt{3+2\sqrt{2}}=\sqrt{18-8\sqrt{2}}+y\sqrt{17-12\sqrt{2}}
Add y\sqrt{17-12\sqrt{2}} to both sides.
\sqrt{2\sqrt{2}+3}x=\sqrt{17-12\sqrt{2}}y+\sqrt{18-8\sqrt{2}}
The equation is in standard form.
\frac{\sqrt{2\sqrt{2}+3}x}{\sqrt{2\sqrt{2}+3}}=\frac{\left(3-2\sqrt{2}\right)y+4-\sqrt{2}}{\sqrt{2\sqrt{2}+3}}
Divide both sides by \sqrt{3+2\sqrt{2}}.
x=\frac{\left(3-2\sqrt{2}\right)y+4-\sqrt{2}}{\sqrt{2\sqrt{2}+3}}
Dividing by \sqrt{3+2\sqrt{2}} undoes the multiplication by \sqrt{3+2\sqrt{2}}.
x=\left(\sqrt{2}-1\right)\left(\left(3-2\sqrt{2}\right)y+4-\sqrt{2}\right)
Divide 4-\sqrt{2}+y\left(3-2\sqrt{2}\right) by \sqrt{3+2\sqrt{2}}.
-y\sqrt{17-12\sqrt{2}}=\sqrt{18-8\sqrt{2}}-x\sqrt{3+2\sqrt{2}}
Subtract x\sqrt{3+2\sqrt{2}} from both sides.
\left(-\sqrt{17-12\sqrt{2}}\right)y=-\sqrt{2\sqrt{2}+3}x+\sqrt{18-8\sqrt{2}}
The equation is in standard form.
\frac{\left(-\sqrt{17-12\sqrt{2}}\right)y}{-\sqrt{17-12\sqrt{2}}}=\frac{-\left(\sqrt{2}+1\right)x+4-\sqrt{2}}{-\sqrt{17-12\sqrt{2}}}
Divide both sides by -\sqrt{17-12\sqrt{2}}.
y=\frac{-\left(\sqrt{2}+1\right)x+4-\sqrt{2}}{-\sqrt{17-12\sqrt{2}}}
Dividing by -\sqrt{17-12\sqrt{2}} undoes the multiplication by -\sqrt{17-12\sqrt{2}}.
y=-\left(2\sqrt{2}+3\right)\left(-\sqrt{2}x-x+4-\sqrt{2}\right)
Divide 4-\sqrt{2}-x\left(\sqrt{2}+1\right) by -\sqrt{17-12\sqrt{2}}.