Solve for x
x = \frac{139}{40} = 3\frac{19}{40} = 3.475
Graph
Share
Copied to clipboard
x\times \frac{2}{5}-\frac{1\times 4}{2\times 25}\times 8=\frac{3}{4}
Multiply \frac{1}{2} times \frac{4}{25} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{2}{5}-\frac{4}{50}\times 8=\frac{3}{4}
Do the multiplications in the fraction \frac{1\times 4}{2\times 25}.
x\times \frac{2}{5}-\frac{2}{25}\times 8=\frac{3}{4}
Reduce the fraction \frac{4}{50} to lowest terms by extracting and canceling out 2.
x\times \frac{2}{5}-\frac{2\times 8}{25}=\frac{3}{4}
Express \frac{2}{25}\times 8 as a single fraction.
x\times \frac{2}{5}-\frac{16}{25}=\frac{3}{4}
Multiply 2 and 8 to get 16.
x\times \frac{2}{5}=\frac{3}{4}+\frac{16}{25}
Add \frac{16}{25} to both sides.
x\times \frac{2}{5}=\frac{75}{100}+\frac{64}{100}
Least common multiple of 4 and 25 is 100. Convert \frac{3}{4} and \frac{16}{25} to fractions with denominator 100.
x\times \frac{2}{5}=\frac{75+64}{100}
Since \frac{75}{100} and \frac{64}{100} have the same denominator, add them by adding their numerators.
x\times \frac{2}{5}=\frac{139}{100}
Add 75 and 64 to get 139.
x=\frac{139}{100}\times \frac{5}{2}
Multiply both sides by \frac{5}{2}, the reciprocal of \frac{2}{5}.
x=\frac{139\times 5}{100\times 2}
Multiply \frac{139}{100} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{695}{200}
Do the multiplications in the fraction \frac{139\times 5}{100\times 2}.
x=\frac{139}{40}
Reduce the fraction \frac{695}{200} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}