Solve for x
x = \frac{2 \sqrt{166} - 8}{15} \approx 1.184546497
x=\frac{-2\sqrt{166}-8}{15}\approx -2.251213164
Graph
Share
Copied to clipboard
x^{2}\times \frac{3}{4}+\frac{4}{5}x=2
Multiply x and x to get x^{2}.
x^{2}\times \frac{3}{4}+\frac{4}{5}x-2=0
Subtract 2 from both sides.
\frac{3}{4}x^{2}+\frac{4}{5}x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{4}{5}±\sqrt{\left(\frac{4}{5}\right)^{2}-4\times \frac{3}{4}\left(-2\right)}}{2\times \frac{3}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{4} for a, \frac{4}{5} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}-4\times \frac{3}{4}\left(-2\right)}}{2\times \frac{3}{4}}
Square \frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}-3\left(-2\right)}}{2\times \frac{3}{4}}
Multiply -4 times \frac{3}{4}.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}+6}}{2\times \frac{3}{4}}
Multiply -3 times -2.
x=\frac{-\frac{4}{5}±\sqrt{\frac{166}{25}}}{2\times \frac{3}{4}}
Add \frac{16}{25} to 6.
x=\frac{-\frac{4}{5}±\frac{\sqrt{166}}{5}}{2\times \frac{3}{4}}
Take the square root of \frac{166}{25}.
x=\frac{-\frac{4}{5}±\frac{\sqrt{166}}{5}}{\frac{3}{2}}
Multiply 2 times \frac{3}{4}.
x=\frac{\sqrt{166}-4}{\frac{3}{2}\times 5}
Now solve the equation x=\frac{-\frac{4}{5}±\frac{\sqrt{166}}{5}}{\frac{3}{2}} when ± is plus. Add -\frac{4}{5} to \frac{\sqrt{166}}{5}.
x=\frac{2\sqrt{166}-8}{15}
Divide \frac{-4+\sqrt{166}}{5} by \frac{3}{2} by multiplying \frac{-4+\sqrt{166}}{5} by the reciprocal of \frac{3}{2}.
x=\frac{-\sqrt{166}-4}{\frac{3}{2}\times 5}
Now solve the equation x=\frac{-\frac{4}{5}±\frac{\sqrt{166}}{5}}{\frac{3}{2}} when ± is minus. Subtract \frac{\sqrt{166}}{5} from -\frac{4}{5}.
x=\frac{-2\sqrt{166}-8}{15}
Divide \frac{-4-\sqrt{166}}{5} by \frac{3}{2} by multiplying \frac{-4-\sqrt{166}}{5} by the reciprocal of \frac{3}{2}.
x=\frac{2\sqrt{166}-8}{15} x=\frac{-2\sqrt{166}-8}{15}
The equation is now solved.
x^{2}\times \frac{3}{4}+\frac{4}{5}x=2
Multiply x and x to get x^{2}.
\frac{3}{4}x^{2}+\frac{4}{5}x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{4}x^{2}+\frac{4}{5}x}{\frac{3}{4}}=\frac{2}{\frac{3}{4}}
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{4}{5}}{\frac{3}{4}}x=\frac{2}{\frac{3}{4}}
Dividing by \frac{3}{4} undoes the multiplication by \frac{3}{4}.
x^{2}+\frac{16}{15}x=\frac{2}{\frac{3}{4}}
Divide \frac{4}{5} by \frac{3}{4} by multiplying \frac{4}{5} by the reciprocal of \frac{3}{4}.
x^{2}+\frac{16}{15}x=\frac{8}{3}
Divide 2 by \frac{3}{4} by multiplying 2 by the reciprocal of \frac{3}{4}.
x^{2}+\frac{16}{15}x+\left(\frac{8}{15}\right)^{2}=\frac{8}{3}+\left(\frac{8}{15}\right)^{2}
Divide \frac{16}{15}, the coefficient of the x term, by 2 to get \frac{8}{15}. Then add the square of \frac{8}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{15}x+\frac{64}{225}=\frac{8}{3}+\frac{64}{225}
Square \frac{8}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{15}x+\frac{64}{225}=\frac{664}{225}
Add \frac{8}{3} to \frac{64}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{15}\right)^{2}=\frac{664}{225}
Factor x^{2}+\frac{16}{15}x+\frac{64}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{15}\right)^{2}}=\sqrt{\frac{664}{225}}
Take the square root of both sides of the equation.
x+\frac{8}{15}=\frac{2\sqrt{166}}{15} x+\frac{8}{15}=-\frac{2\sqrt{166}}{15}
Simplify.
x=\frac{2\sqrt{166}-8}{15} x=\frac{-2\sqrt{166}-8}{15}
Subtract \frac{8}{15} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}