Solve for x
x\geq \frac{5}{3}
Graph
Quiz
Algebra
5 problems similar to:
x \cdot ( x - 3 ) + 2 \cdot ( 3 - x ) \leq ( x + 1 ) ^ { 2 } - 4 x
Share
Copied to clipboard
x^{2}-3x+2\left(3-x\right)\leq \left(x+1\right)^{2}-4x
Use the distributive property to multiply x by x-3.
x^{2}-3x+6-2x\leq \left(x+1\right)^{2}-4x
Use the distributive property to multiply 2 by 3-x.
x^{2}-5x+6\leq \left(x+1\right)^{2}-4x
Combine -3x and -2x to get -5x.
x^{2}-5x+6\leq x^{2}+2x+1-4x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-5x+6\leq x^{2}-2x+1
Combine 2x and -4x to get -2x.
x^{2}-5x+6-x^{2}\leq -2x+1
Subtract x^{2} from both sides.
-5x+6\leq -2x+1
Combine x^{2} and -x^{2} to get 0.
-5x+6+2x\leq 1
Add 2x to both sides.
-3x+6\leq 1
Combine -5x and 2x to get -3x.
-3x\leq 1-6
Subtract 6 from both sides.
-3x\leq -5
Subtract 6 from 1 to get -5.
x\geq \frac{-5}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x\geq \frac{5}{3}
Fraction \frac{-5}{-3} can be simplified to \frac{5}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}