Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{21t^{2}-60\sqrt{3}t-4}{3z\phi }\text{, }&z\neq 0\text{ and }\phi \neq 0\\x\in \mathrm{C}\text{, }&\left(t=\frac{10\sqrt{3}}{7}-\frac{4\sqrt{174}}{21}\text{ and }z=0\right)\text{ or }\left(t=\frac{4\sqrt{174}}{21}+\frac{10\sqrt{3}}{7}\text{ and }z=0\right)\text{ or }\left(t=\frac{4\sqrt{174}}{21}+\frac{10\sqrt{3}}{7}\text{ and }\phi =0\text{ and }z\neq 0\right)\text{ or }\left(t=\frac{10\sqrt{3}}{7}-\frac{4\sqrt{174}}{21}\text{ and }\phi =0\text{ and }z\neq 0\right)\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{21t^{2}-60\sqrt{3}t-4}{3z\phi }\text{, }&z\neq 0\text{ and }\phi \neq 0\\x\in \mathrm{R}\text{, }&\left(t=\frac{10\sqrt{3}}{7}-\frac{4\sqrt{174}}{21}\text{ and }z=0\right)\text{ or }\left(t=\frac{4\sqrt{174}}{21}+\frac{10\sqrt{3}}{7}\text{ and }z=0\right)\text{ or }\left(t=\frac{4\sqrt{174}}{21}+\frac{10\sqrt{3}}{7}\text{ and }\phi =0\text{ and }z\neq 0\right)\text{ or }\left(t=\frac{10\sqrt{3}}{7}-\frac{4\sqrt{174}}{21}\text{ and }\phi =0\text{ and }z\neq 0\right)\end{matrix}\right.
Solve for t (complex solution)
t=\frac{\sqrt{2784-63xz\phi }}{21}+\frac{10\sqrt{3}}{7}
t=-\frac{\sqrt{2784-63xz\phi }}{21}+\frac{10\sqrt{3}}{7}
Solve for t
t=\frac{\sqrt{2784-63xz\phi }}{21}+\frac{10\sqrt{3}}{7}
t=-\frac{\sqrt{2784-63xz\phi }}{21}+\frac{10\sqrt{3}}{7}\text{, }\left(z\leq 0\text{ or }\phi \leq 0\text{ or }x\leq \frac{928}{21z\phi }\right)\text{ and }\left(x\geq \frac{928}{21z\phi }\text{ or }\phi \leq 0\text{ or }z\geq 0\right)\text{ and }\left(\phi \geq 0\text{ or }x\geq \frac{928}{21z\phi }\text{ or }z\leq 0\right)\text{ and }\left(\phi \geq 0\text{ or }z\geq 0\text{ or }x\leq \frac{928}{21z\phi }\right)
Share
Copied to clipboard
x\phi z+7t^{2}-20\sqrt{3}t=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x\phi z+7t^{2}=\frac{4}{3}+20\sqrt{3}t
Add 20\sqrt{3}t to both sides.
x\phi z=\frac{4}{3}+20\sqrt{3}t-7t^{2}
Subtract 7t^{2} from both sides.
z\phi x=-7t^{2}+20\sqrt{3}t+\frac{4}{3}
The equation is in standard form.
\frac{z\phi x}{z\phi }=\frac{-7t^{2}+20\sqrt{3}t+\frac{4}{3}}{z\phi }
Divide both sides by \phi z.
x=\frac{-7t^{2}+20\sqrt{3}t+\frac{4}{3}}{z\phi }
Dividing by \phi z undoes the multiplication by \phi z.
x=\frac{-21t^{2}+60\sqrt{3}t+4}{3z\phi }
Divide \frac{4}{3}+20\sqrt{3}t-7t^{2} by \phi z.
x\phi z+7t^{2}-20\sqrt{3}t=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x\phi z+7t^{2}=\frac{4}{3}+20\sqrt{3}t
Add 20\sqrt{3}t to both sides.
x\phi z=\frac{4}{3}+20\sqrt{3}t-7t^{2}
Subtract 7t^{2} from both sides.
z\phi x=-7t^{2}+20\sqrt{3}t+\frac{4}{3}
The equation is in standard form.
\frac{z\phi x}{z\phi }=\frac{-7t^{2}+20\sqrt{3}t+\frac{4}{3}}{z\phi }
Divide both sides by \phi z.
x=\frac{-7t^{2}+20\sqrt{3}t+\frac{4}{3}}{z\phi }
Dividing by \phi z undoes the multiplication by \phi z.
x=\frac{-21t^{2}+60\sqrt{3}t+4}{3z\phi }
Divide \frac{4}{3}+20\sqrt{3}t-7t^{2} by \phi z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}