x ^ { y } - d x - k = 0
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{x^{y}-k}{x}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }k=0\end{matrix}\right.
Solve for k (complex solution)
k=x^{y}-dx
Solve for d
\left\{\begin{matrix}d=\frac{x^{y}-k}{x}\text{, }&x>0\text{ or }\left(Denominator(y)\text{bmod}2=1\text{ and }x<0\right)\\d\in \mathrm{R}\text{, }&x=0\text{ and }k=0\text{ and }y>0\end{matrix}\right.
Solve for k
k=x^{y}-dx
\left(x<0\text{ and }Denominator(y)\text{bmod}2=1\right)\text{ or }\left(x=0\text{ and }y>0\right)\text{ or }x>0
Graph
Share
Copied to clipboard
-dx-k=-x^{y}
Subtract x^{y} from both sides. Anything subtracted from zero gives its negation.
-dx=-x^{y}+k
Add k to both sides.
\left(-x\right)d=k-x^{y}
The equation is in standard form.
\frac{\left(-x\right)d}{-x}=\frac{k-x^{y}}{-x}
Divide both sides by -x.
d=\frac{k-x^{y}}{-x}
Dividing by -x undoes the multiplication by -x.
d=-\frac{k-x^{y}}{x}
Divide k-x^{y} by -x.
-dx-k=-x^{y}
Subtract x^{y} from both sides. Anything subtracted from zero gives its negation.
-k=-x^{y}+dx
Add dx to both sides.
-k=dx-x^{y}
The equation is in standard form.
\frac{-k}{-1}=\frac{dx-x^{y}}{-1}
Divide both sides by -1.
k=\frac{dx-x^{y}}{-1}
Dividing by -1 undoes the multiplication by -1.
k=x^{y}-dx
Divide -x^{y}+dx by -1.
-dx-k=-x^{y}
Subtract x^{y} from both sides. Anything subtracted from zero gives its negation.
-dx=-x^{y}+k
Add k to both sides.
\left(-x\right)d=k-x^{y}
The equation is in standard form.
\frac{\left(-x\right)d}{-x}=\frac{k-x^{y}}{-x}
Divide both sides by -x.
d=\frac{k-x^{y}}{-x}
Dividing by -x undoes the multiplication by -x.
d=-\frac{k-x^{y}}{x}
Divide k-x^{y} by -x.
-dx-k=-x^{y}
Subtract x^{y} from both sides. Anything subtracted from zero gives its negation.
-k=-x^{y}+dx
Add dx to both sides.
-k=dx-x^{y}
The equation is in standard form.
\frac{-k}{-1}=\frac{dx-x^{y}}{-1}
Divide both sides by -1.
k=\frac{dx-x^{y}}{-1}
Dividing by -1 undoes the multiplication by -1.
k=x^{y}-dx
Divide -x^{y}+dx by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}