Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{36}-y^{16}\right)\left(x^{36}+y^{16}\right)
Rewrite x^{72}-y^{32} as \left(x^{36}\right)^{2}-\left(y^{16}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{18}-y^{8}\right)\left(x^{18}+y^{8}\right)
Consider x^{36}-y^{16}. Rewrite x^{36}-y^{16} as \left(x^{18}\right)^{2}-\left(y^{8}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{9}-y^{4}\right)\left(x^{9}+y^{4}\right)
Consider x^{18}-y^{8}. Rewrite x^{18}-y^{8} as \left(x^{9}\right)^{2}-\left(y^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{9}-y^{4}\right)\left(x^{9}+y^{4}\right)\left(x^{18}+y^{8}\right)\left(x^{36}+y^{16}\right)
Rewrite the complete factored expression.