Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}-6t+10=0
Substitute t for x^{2}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 10}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -6 for b, and 10 for c in the quadratic formula.
t=\frac{6±\sqrt{-4}}{2}
Do the calculations.
t=3+i t=3-i
Solve the equation t=\frac{6±\sqrt{-4}}{2} when ± is plus and when ± is minus.
x=\sqrt[4]{10}e^{\frac{\arctan(\frac{1}{3})i+2\pi i}{2}} x=\sqrt[4]{10}e^{\frac{\arctan(\frac{1}{3})i}{2}} x=\sqrt[4]{10}e^{-\frac{\arctan(\frac{1}{3})i}{2}} x=\sqrt[4]{10}e^{\frac{-\arctan(\frac{1}{3})i+2\pi i}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.