Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-8000=0
Subtract 8000 from both sides.
±8000,±4000,±2000,±1600,±1000,±800,±500,±400,±320,±250,±200,±160,±125,±100,±80,±64,±50,±40,±32,±25,±20,±16,±10,±8,±5,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -8000 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=20
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+20x+400=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-8000 by x-20 to get x^{2}+20x+400. Solve the equation where the result equals to 0.
x=\frac{-20±\sqrt{20^{2}-4\times 1\times 400}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 20 for b, and 400 for c in the quadratic formula.
x=\frac{-20±\sqrt{-1200}}{2}
Do the calculations.
x=-10i\sqrt{3}-10 x=-10+10i\sqrt{3}
Solve the equation x^{2}+20x+400=0 when ± is plus and when ± is minus.
x=20 x=-10i\sqrt{3}-10 x=-10+10i\sqrt{3}
List all found solutions.
x^{3}-8000=0
Subtract 8000 from both sides.
±8000,±4000,±2000,±1600,±1000,±800,±500,±400,±320,±250,±200,±160,±125,±100,±80,±64,±50,±40,±32,±25,±20,±16,±10,±8,±5,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -8000 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=20
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+20x+400=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-8000 by x-20 to get x^{2}+20x+400. Solve the equation where the result equals to 0.
x=\frac{-20±\sqrt{20^{2}-4\times 1\times 400}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 20 for b, and 400 for c in the quadratic formula.
x=\frac{-20±\sqrt{-1200}}{2}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=20
List all found solutions.