Factor
\left(x-y\right)\left(x+y\right)\left(x^{2}+y^{2}\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right)\left(x^{4}+y^{4}\right)\left(x^{4}-x^{2}y^{2}+y^{4}\right)\left(x^{8}-x^{4}y^{4}+y^{8}\right)
Evaluate
\left(x^{4}+y^{4}-\left(xy\right)^{2}\right)\left(-\left(xy\right)^{2}+\left(x^{2}+y^{2}\right)^{2}\right)\left(x^{8}-y^{8}\right)\left(x^{8}+y^{8}-\left(xy\right)^{4}\right)
Share
Copied to clipboard
\left(x^{12}-y^{12}\right)\left(x^{12}+y^{12}\right)
Rewrite x^{24}-y^{24} as \left(x^{12}\right)^{2}-\left(y^{12}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{6}-y^{6}\right)\left(x^{6}+y^{6}\right)
Consider x^{12}-y^{12}. Rewrite x^{12}-y^{12} as \left(x^{6}\right)^{2}-\left(y^{6}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}-y^{3}\right)\left(x^{3}+y^{3}\right)
Consider x^{6}-y^{6}. Rewrite x^{6}-y^{6} as \left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
Consider x^{3}-y^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+y\right)\left(x^{2}-xy+y^{2}\right)
Consider x^{3}+y^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2}y^{2}+y^{4}\right)
Consider x^{6}+y^{6}. Rewrite x^{6}+y^{6} as \left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{4}+y^{4}\right)\left(x^{8}-x^{4}y^{4}+y^{8}\right)
Consider x^{12}+y^{12}. Rewrite x^{12}+y^{12} as \left(x^{4}\right)^{3}+\left(y^{4}\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-y\right)\left(x+y\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right)\left(x^{4}-x^{2}y^{2}+y^{4}\right)\left(x^{8}-x^{4}y^{4}+y^{8}\right)\left(x^{2}+y^{2}\right)\left(x^{4}+y^{4}\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}