Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{12}-y^{12}\right)\left(x^{12}+y^{12}\right)
Rewrite x^{24}-y^{24} as \left(x^{12}\right)^{2}-\left(y^{12}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{6}-y^{6}\right)\left(x^{6}+y^{6}\right)
Consider x^{12}-y^{12}. Rewrite x^{12}-y^{12} as \left(x^{6}\right)^{2}-\left(y^{6}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}-y^{3}\right)\left(x^{3}+y^{3}\right)
Consider x^{6}-y^{6}. Rewrite x^{6}-y^{6} as \left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-y\right)\left(x^{2}+xy+y^{2}\right)
Consider x^{3}-y^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+y\right)\left(x^{2}-xy+y^{2}\right)
Consider x^{3}+y^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2}y^{2}+y^{4}\right)
Consider x^{6}+y^{6}. Rewrite x^{6}+y^{6} as \left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{4}+y^{4}\right)\left(x^{8}-x^{4}y^{4}+y^{8}\right)
Consider x^{12}+y^{12}. Rewrite x^{12}+y^{12} as \left(x^{4}\right)^{3}+\left(y^{4}\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-y\right)\left(x+y\right)\left(x^{2}-xy+y^{2}\right)\left(x^{2}+xy+y^{2}\right)\left(x^{4}-x^{2}y^{2}+y^{4}\right)\left(x^{8}-x^{4}y^{4}+y^{8}\right)\left(x^{2}+y^{2}\right)\left(x^{4}+y^{4}\right)
Rewrite the complete factored expression.