Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-8\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+32}}{2}
Multiply -4 times -8.
x=\frac{-\left(-1\right)±\sqrt{33}}{2}
Add 1 to 32.
x=\frac{1±\sqrt{33}}{2}
The opposite of -1 is 1.
x=\frac{\sqrt{33}+1}{2}
Now solve the equation x=\frac{1±\sqrt{33}}{2} when ± is plus. Add 1 to \sqrt{33}.
x=\frac{1-\sqrt{33}}{2}
Now solve the equation x=\frac{1±\sqrt{33}}{2} when ± is minus. Subtract \sqrt{33} from 1.
x^{2}-x-8=\left(x-\frac{\sqrt{33}+1}{2}\right)\left(x-\frac{1-\sqrt{33}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{33}}{2} for x_{1} and \frac{1-\sqrt{33}}{2} for x_{2}.
x^{2}-x-8
Add -8 and 0 to get -8.