Solve for x
x=\frac{\sqrt{1257157}}{25}+0.5\approx 45.349205121
x=-\frac{\sqrt{1257157}}{25}+0.5\approx -44.349205121
Graph
Share
Copied to clipboard
x^{2}-x-2011.2012=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2011.2012\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -2011.2012 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8044.8048}}{2}
Multiply -4 times -2011.2012.
x=\frac{-\left(-1\right)±\sqrt{8045.8048}}{2}
Add 1 to 8044.8048.
x=\frac{-\left(-1\right)±\frac{2\sqrt{1257157}}{25}}{2}
Take the square root of 8045.8048.
x=\frac{1±\frac{2\sqrt{1257157}}{25}}{2}
The opposite of -1 is 1.
x=\frac{\frac{2\sqrt{1257157}}{25}+1}{2}
Now solve the equation x=\frac{1±\frac{2\sqrt{1257157}}{25}}{2} when ± is plus. Add 1 to \frac{2\sqrt{1257157}}{25}.
x=\frac{\sqrt{1257157}}{25}+\frac{1}{2}
Divide 1+\frac{2\sqrt{1257157}}{25} by 2.
x=\frac{-\frac{2\sqrt{1257157}}{25}+1}{2}
Now solve the equation x=\frac{1±\frac{2\sqrt{1257157}}{25}}{2} when ± is minus. Subtract \frac{2\sqrt{1257157}}{25} from 1.
x=-\frac{\sqrt{1257157}}{25}+\frac{1}{2}
Divide 1-\frac{2\sqrt{1257157}}{25} by 2.
x=\frac{\sqrt{1257157}}{25}+\frac{1}{2} x=-\frac{\sqrt{1257157}}{25}+\frac{1}{2}
The equation is now solved.
x^{2}-x-2011.2012=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-x-2011.2012-\left(-2011.2012\right)=-\left(-2011.2012\right)
Add 2011.2012 to both sides of the equation.
x^{2}-x=-\left(-2011.2012\right)
Subtracting -2011.2012 from itself leaves 0.
x^{2}-x=2011.2012
Subtract -2011.2012 from 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2011.2012+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=2011.2012+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{1257157}{625}
Add 2011.2012 to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{1257157}{625}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1257157}{625}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{1257157}}{25} x-\frac{1}{2}=-\frac{\sqrt{1257157}}{25}
Simplify.
x=\frac{\sqrt{1257157}}{25}+\frac{1}{2} x=-\frac{\sqrt{1257157}}{25}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}