Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-7x^{2}-2x+1=0
Combine x^{2} and -8x^{2} to get -7x^{2}.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-7\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, -2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-7\right)}}{2\left(-7\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+28}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-\left(-2\right)±\sqrt{32}}{2\left(-7\right)}
Add 4 to 28.
x=\frac{-\left(-2\right)±4\sqrt{2}}{2\left(-7\right)}
Take the square root of 32.
x=\frac{2±4\sqrt{2}}{2\left(-7\right)}
The opposite of -2 is 2.
x=\frac{2±4\sqrt{2}}{-14}
Multiply 2 times -7.
x=\frac{4\sqrt{2}+2}{-14}
Now solve the equation x=\frac{2±4\sqrt{2}}{-14} when ± is plus. Add 2 to 4\sqrt{2}.
x=\frac{-2\sqrt{2}-1}{7}
Divide 4\sqrt{2}+2 by -14.
x=\frac{2-4\sqrt{2}}{-14}
Now solve the equation x=\frac{2±4\sqrt{2}}{-14} when ± is minus. Subtract 4\sqrt{2} from 2.
x=\frac{2\sqrt{2}-1}{7}
Divide 2-4\sqrt{2} by -14.
x=\frac{-2\sqrt{2}-1}{7} x=\frac{2\sqrt{2}-1}{7}
The equation is now solved.
-7x^{2}-2x+1=0
Combine x^{2} and -8x^{2} to get -7x^{2}.
-7x^{2}-2x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{-7x^{2}-2x}{-7}=-\frac{1}{-7}
Divide both sides by -7.
x^{2}+\left(-\frac{2}{-7}\right)x=-\frac{1}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}+\frac{2}{7}x=-\frac{1}{-7}
Divide -2 by -7.
x^{2}+\frac{2}{7}x=\frac{1}{7}
Divide -1 by -7.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=\frac{1}{7}+\left(\frac{1}{7}\right)^{2}
Divide \frac{2}{7}, the coefficient of the x term, by 2 to get \frac{1}{7}. Then add the square of \frac{1}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{1}{7}+\frac{1}{49}
Square \frac{1}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{8}{49}
Add \frac{1}{7} to \frac{1}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{7}\right)^{2}=\frac{8}{49}
Factor x^{2}+\frac{2}{7}x+\frac{1}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{\frac{8}{49}}
Take the square root of both sides of the equation.
x+\frac{1}{7}=\frac{2\sqrt{2}}{7} x+\frac{1}{7}=-\frac{2\sqrt{2}}{7}
Simplify.
x=\frac{2\sqrt{2}-1}{7} x=\frac{-2\sqrt{2}-1}{7}
Subtract \frac{1}{7} from both sides of the equation.