x ^ { 2 } - 6,6 x - 7,1 = 0
Solve for x
x = \frac{\sqrt{1799} + 33}{10} \approx 7.541462012
x=\frac{33-\sqrt{1799}}{10}\approx -0.941462012
Graph
Share
Copied to clipboard
x^{2}-6,6x-7,1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6,6\right)±\sqrt{\left(-6,6\right)^{2}-4\left(-7,1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6,6 for b, and -7,1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6,6\right)±\sqrt{43,56-4\left(-7,1\right)}}{2}
Square -6,6 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-6,6\right)±\sqrt{43,56+28,4}}{2}
Multiply -4 times -7,1.
x=\frac{-\left(-6,6\right)±\sqrt{71,96}}{2}
Add 43,56 to 28,4 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-6,6\right)±\frac{\sqrt{1799}}{5}}{2}
Take the square root of 71,96.
x=\frac{6,6±\frac{\sqrt{1799}}{5}}{2}
The opposite of -6,6 is 6,6.
x=\frac{\sqrt{1799}+33}{2\times 5}
Now solve the equation x=\frac{6,6±\frac{\sqrt{1799}}{5}}{2} when ± is plus. Add 6,6 to \frac{\sqrt{1799}}{5}.
x=\frac{\sqrt{1799}+33}{10}
Divide \frac{33+\sqrt{1799}}{5} by 2.
x=\frac{33-\sqrt{1799}}{2\times 5}
Now solve the equation x=\frac{6,6±\frac{\sqrt{1799}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{1799}}{5} from 6,6.
x=\frac{33-\sqrt{1799}}{10}
Divide \frac{33-\sqrt{1799}}{5} by 2.
x=\frac{\sqrt{1799}+33}{10} x=\frac{33-\sqrt{1799}}{10}
The equation is now solved.
x^{2}-6,6x-7,1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-6,6x-7,1-\left(-7,1\right)=-\left(-7,1\right)
Add 7,1 to both sides of the equation.
x^{2}-6,6x=-\left(-7,1\right)
Subtracting -7,1 from itself leaves 0.
x^{2}-6,6x=7,1
Subtract -7,1 from 0.
x^{2}-6,6x+\left(-3,3\right)^{2}=7,1+\left(-3,3\right)^{2}
Divide -6,6, the coefficient of the x term, by 2 to get -3,3. Then add the square of -3,3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6,6x+10,89=7,1+10,89
Square -3,3 by squaring both the numerator and the denominator of the fraction.
x^{2}-6,6x+10,89=17,99
Add 7,1 to 10,89 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-3,3\right)^{2}=17,99
Factor x^{2}-6,6x+10,89. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3,3\right)^{2}}=\sqrt{17,99}
Take the square root of both sides of the equation.
x-3,3=\frac{\sqrt{1799}}{10} x-3,3=-\frac{\sqrt{1799}}{10}
Simplify.
x=\frac{\sqrt{1799}+33}{10} x=\frac{33-\sqrt{1799}}{10}
Add 3,3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}