Evaluate
\left(5x-6\right)\left(2x+1\right)
Factor
\left(5x-6\right)\left(2x+1\right)
Graph
Share
Copied to clipboard
10x^{2}-6x-x-6
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}-7x-6
Combine -6x and -x to get -7x.
10x^{2}-7x-6
Multiply and combine like terms.
a+b=-7 ab=10\left(-6\right)=-60
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=-12 b=5
The solution is the pair that gives sum -7.
\left(10x^{2}-12x\right)+\left(5x-6\right)
Rewrite 10x^{2}-7x-6 as \left(10x^{2}-12x\right)+\left(5x-6\right).
2x\left(5x-6\right)+5x-6
Factor out 2x in 10x^{2}-12x.
\left(5x-6\right)\left(2x+1\right)
Factor out common term 5x-6 by using distributive property.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}