Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+12x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-5\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-5\right)}}{2}
Square 12.
x=\frac{-12±\sqrt{144+20}}{2}
Multiply -4 times -5.
x=\frac{-12±\sqrt{164}}{2}
Add 144 to 20.
x=\frac{-12±2\sqrt{41}}{2}
Take the square root of 164.
x=\frac{2\sqrt{41}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{41}}{2} when ± is plus. Add -12 to 2\sqrt{41}.
x=\sqrt{41}-6
Divide -12+2\sqrt{41} by 2.
x=\frac{-2\sqrt{41}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{41}}{2} when ± is minus. Subtract 2\sqrt{41} from -12.
x=-\sqrt{41}-6
Divide -12-2\sqrt{41} by 2.
x^{2}+12x-5=\left(x-\left(\sqrt{41}-6\right)\right)\left(x-\left(-\sqrt{41}-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6+\sqrt{41} for x_{1} and -6-\sqrt{41} for x_{2}.