Factor
\left(x-\left(-\sqrt{41}-6\right)\right)\left(x-\left(\sqrt{41}-6\right)\right)
Evaluate
x^{2}+12x-5
Graph
Share
Copied to clipboard
x^{2}+12x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-5\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-5\right)}}{2}
Square 12.
x=\frac{-12±\sqrt{144+20}}{2}
Multiply -4 times -5.
x=\frac{-12±\sqrt{164}}{2}
Add 144 to 20.
x=\frac{-12±2\sqrt{41}}{2}
Take the square root of 164.
x=\frac{2\sqrt{41}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{41}}{2} when ± is plus. Add -12 to 2\sqrt{41}.
x=\sqrt{41}-6
Divide -12+2\sqrt{41} by 2.
x=\frac{-2\sqrt{41}-12}{2}
Now solve the equation x=\frac{-12±2\sqrt{41}}{2} when ± is minus. Subtract 2\sqrt{41} from -12.
x=-\sqrt{41}-6
Divide -12-2\sqrt{41} by 2.
x^{2}+12x-5=\left(x-\left(\sqrt{41}-6\right)\right)\left(x-\left(-\sqrt{41}-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6+\sqrt{41} for x_{1} and -6-\sqrt{41} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}