Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-8x+7=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-3\right)\times 7}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -8 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-3\right)\times 7}}{2\left(-3\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+12\times 7}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-8\right)±\sqrt{64+84}}{2\left(-3\right)}
Multiply 12 times 7.
x=\frac{-\left(-8\right)±\sqrt{148}}{2\left(-3\right)}
Add 64 to 84.
x=\frac{-\left(-8\right)±2\sqrt{37}}{2\left(-3\right)}
Take the square root of 148.
x=\frac{8±2\sqrt{37}}{2\left(-3\right)}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{37}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{37}+8}{-6}
Now solve the equation x=\frac{8±2\sqrt{37}}{-6} when ± is plus. Add 8 to 2\sqrt{37}.
x=\frac{-\sqrt{37}-4}{3}
Divide 8+2\sqrt{37} by -6.
x=\frac{8-2\sqrt{37}}{-6}
Now solve the equation x=\frac{8±2\sqrt{37}}{-6} when ± is minus. Subtract 2\sqrt{37} from 8.
x=\frac{\sqrt{37}-4}{3}
Divide 8-2\sqrt{37} by -6.
x=\frac{-\sqrt{37}-4}{3} x=\frac{\sqrt{37}-4}{3}
The equation is now solved.
-3x^{2}-8x+7=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-8x=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
\frac{-3x^{2}-8x}{-3}=-\frac{7}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{8}{-3}\right)x=-\frac{7}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{8}{3}x=-\frac{7}{-3}
Divide -8 by -3.
x^{2}+\frac{8}{3}x=\frac{7}{3}
Divide -7 by -3.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\frac{7}{3}+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{7}{3}+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{37}{9}
Add \frac{7}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{3}\right)^{2}=\frac{37}{9}
Factor x^{2}+\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{37}{9}}
Take the square root of both sides of the equation.
x+\frac{4}{3}=\frac{\sqrt{37}}{3} x+\frac{4}{3}=-\frac{\sqrt{37}}{3}
Simplify.
x=\frac{\sqrt{37}-4}{3} x=\frac{-\sqrt{37}-4}{3}
Subtract \frac{4}{3} from both sides of the equation.