Solve for x
x = \frac{4 \sqrt{37} + 20}{3} \approx 14.777016707
x=\frac{20-4\sqrt{37}}{3}\approx -1.443683374
Graph
Share
Copied to clipboard
-3x^{2}+40x+64=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-40±\sqrt{40^{2}-4\left(-3\right)\times 64}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 40 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-3\right)\times 64}}{2\left(-3\right)}
Square 40.
x=\frac{-40±\sqrt{1600+12\times 64}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-40±\sqrt{1600+768}}{2\left(-3\right)}
Multiply 12 times 64.
x=\frac{-40±\sqrt{2368}}{2\left(-3\right)}
Add 1600 to 768.
x=\frac{-40±8\sqrt{37}}{2\left(-3\right)}
Take the square root of 2368.
x=\frac{-40±8\sqrt{37}}{-6}
Multiply 2 times -3.
x=\frac{8\sqrt{37}-40}{-6}
Now solve the equation x=\frac{-40±8\sqrt{37}}{-6} when ± is plus. Add -40 to 8\sqrt{37}.
x=\frac{20-4\sqrt{37}}{3}
Divide -40+8\sqrt{37} by -6.
x=\frac{-8\sqrt{37}-40}{-6}
Now solve the equation x=\frac{-40±8\sqrt{37}}{-6} when ± is minus. Subtract 8\sqrt{37} from -40.
x=\frac{4\sqrt{37}+20}{3}
Divide -40-8\sqrt{37} by -6.
x=\frac{20-4\sqrt{37}}{3} x=\frac{4\sqrt{37}+20}{3}
The equation is now solved.
-3x^{2}+40x+64=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+40x=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
\frac{-3x^{2}+40x}{-3}=-\frac{64}{-3}
Divide both sides by -3.
x^{2}+\frac{40}{-3}x=-\frac{64}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{40}{3}x=-\frac{64}{-3}
Divide 40 by -3.
x^{2}-\frac{40}{3}x=\frac{64}{3}
Divide -64 by -3.
x^{2}-\frac{40}{3}x+\left(-\frac{20}{3}\right)^{2}=\frac{64}{3}+\left(-\frac{20}{3}\right)^{2}
Divide -\frac{40}{3}, the coefficient of the x term, by 2 to get -\frac{20}{3}. Then add the square of -\frac{20}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{40}{3}x+\frac{400}{9}=\frac{64}{3}+\frac{400}{9}
Square -\frac{20}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{40}{3}x+\frac{400}{9}=\frac{592}{9}
Add \frac{64}{3} to \frac{400}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{20}{3}\right)^{2}=\frac{592}{9}
Factor x^{2}-\frac{40}{3}x+\frac{400}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{20}{3}\right)^{2}}=\sqrt{\frac{592}{9}}
Take the square root of both sides of the equation.
x-\frac{20}{3}=\frac{4\sqrt{37}}{3} x-\frac{20}{3}=-\frac{4\sqrt{37}}{3}
Simplify.
x=\frac{4\sqrt{37}+20}{3} x=\frac{20-4\sqrt{37}}{3}
Add \frac{20}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}