Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x=\frac{29}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-4x-\frac{29}{4}=\frac{29}{4}-\frac{29}{4}
Subtract \frac{29}{4} from both sides of the equation.
x^{2}-4x-\frac{29}{4}=0
Subtracting \frac{29}{4} from itself leaves 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-\frac{29}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -\frac{29}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-\frac{29}{4}\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+29}}{2}
Multiply -4 times -\frac{29}{4}.
x=\frac{-\left(-4\right)±\sqrt{45}}{2}
Add 16 to 29.
x=\frac{-\left(-4\right)±3\sqrt{5}}{2}
Take the square root of 45.
x=\frac{4±3\sqrt{5}}{2}
The opposite of -4 is 4.
x=\frac{3\sqrt{5}+4}{2}
Now solve the equation x=\frac{4±3\sqrt{5}}{2} when ± is plus. Add 4 to 3\sqrt{5}.
x=\frac{3\sqrt{5}}{2}+2
Divide 4+3\sqrt{5} by 2.
x=\frac{4-3\sqrt{5}}{2}
Now solve the equation x=\frac{4±3\sqrt{5}}{2} when ± is minus. Subtract 3\sqrt{5} from 4.
x=-\frac{3\sqrt{5}}{2}+2
Divide 4-3\sqrt{5} by 2.
x=\frac{3\sqrt{5}}{2}+2 x=-\frac{3\sqrt{5}}{2}+2
The equation is now solved.
x^{2}-4x=\frac{29}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-4x+\left(-2\right)^{2}=\frac{29}{4}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{29}{4}+4
Square -2.
x^{2}-4x+4=\frac{45}{4}
Add \frac{29}{4} to 4.
\left(x-2\right)^{2}=\frac{45}{4}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
x-2=\frac{3\sqrt{5}}{2} x-2=-\frac{3\sqrt{5}}{2}
Simplify.
x=\frac{3\sqrt{5}}{2}+2 x=-\frac{3\sqrt{5}}{2}+2
Add 2 to both sides of the equation.