Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x+16=137
Add 121 and 16 to get 137.
x^{2}-4x+16-137=0
Subtract 137 from both sides.
x^{2}-4x-121=0
Subtract 137 from 16 to get -121.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-121\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-121\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+484}}{2}
Multiply -4 times -121.
x=\frac{-\left(-4\right)±\sqrt{500}}{2}
Add 16 to 484.
x=\frac{-\left(-4\right)±10\sqrt{5}}{2}
Take the square root of 500.
x=\frac{4±10\sqrt{5}}{2}
The opposite of -4 is 4.
x=\frac{10\sqrt{5}+4}{2}
Now solve the equation x=\frac{4±10\sqrt{5}}{2} when ± is plus. Add 4 to 10\sqrt{5}.
x=5\sqrt{5}+2
Divide 4+10\sqrt{5} by 2.
x=\frac{4-10\sqrt{5}}{2}
Now solve the equation x=\frac{4±10\sqrt{5}}{2} when ± is minus. Subtract 10\sqrt{5} from 4.
x=2-5\sqrt{5}
Divide 4-10\sqrt{5} by 2.
x=5\sqrt{5}+2 x=2-5\sqrt{5}
The equation is now solved.
x^{2}-4x+16=137
Add 121 and 16 to get 137.
x^{2}-4x=137-16
Subtract 16 from both sides.
x^{2}-4x=121
Subtract 16 from 137 to get 121.
x^{2}-4x+\left(-2\right)^{2}=121+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=121+4
Square -2.
x^{2}-4x+4=125
Add 121 to 4.
\left(x-2\right)^{2}=125
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{125}
Take the square root of both sides of the equation.
x-2=5\sqrt{5} x-2=-5\sqrt{5}
Simplify.
x=5\sqrt{5}+2 x=2-5\sqrt{5}
Add 2 to both sides of the equation.