Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x^{2}-4x-8=3x^{2}+4x+4
Use the distributive property to multiply -4 by x^{2}+x+2.
-3x^{2}-4x-8=3x^{2}+4x+4
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-4x-8-3x^{2}=4x+4
Subtract 3x^{2} from both sides.
-6x^{2}-4x-8=4x+4
Combine -3x^{2} and -3x^{2} to get -6x^{2}.
-6x^{2}-4x-8-4x=4
Subtract 4x from both sides.
-6x^{2}-8x-8=4
Combine -4x and -4x to get -8x.
-6x^{2}-8x-8-4=0
Subtract 4 from both sides.
-6x^{2}-8x-12=0
Subtract 4 from -8 to get -12.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -8 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+24\left(-12\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-8\right)±\sqrt{64-288}}{2\left(-6\right)}
Multiply 24 times -12.
x=\frac{-\left(-8\right)±\sqrt{-224}}{2\left(-6\right)}
Add 64 to -288.
x=\frac{-\left(-8\right)±4\sqrt{14}i}{2\left(-6\right)}
Take the square root of -224.
x=\frac{8±4\sqrt{14}i}{2\left(-6\right)}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{14}i}{-12}
Multiply 2 times -6.
x=\frac{8+4\sqrt{14}i}{-12}
Now solve the equation x=\frac{8±4\sqrt{14}i}{-12} when ± is plus. Add 8 to 4i\sqrt{14}.
x=\frac{-\sqrt{14}i-2}{3}
Divide 8+4i\sqrt{14} by -12.
x=\frac{-4\sqrt{14}i+8}{-12}
Now solve the equation x=\frac{8±4\sqrt{14}i}{-12} when ± is minus. Subtract 4i\sqrt{14} from 8.
x=\frac{-2+\sqrt{14}i}{3}
Divide 8-4i\sqrt{14} by -12.
x=\frac{-\sqrt{14}i-2}{3} x=\frac{-2+\sqrt{14}i}{3}
The equation is now solved.
x^{2}-4x^{2}-4x-8=3x^{2}+4x+4
Use the distributive property to multiply -4 by x^{2}+x+2.
-3x^{2}-4x-8=3x^{2}+4x+4
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-4x-8-3x^{2}=4x+4
Subtract 3x^{2} from both sides.
-6x^{2}-4x-8=4x+4
Combine -3x^{2} and -3x^{2} to get -6x^{2}.
-6x^{2}-4x-8-4x=4
Subtract 4x from both sides.
-6x^{2}-8x-8=4
Combine -4x and -4x to get -8x.
-6x^{2}-8x=4+8
Add 8 to both sides.
-6x^{2}-8x=12
Add 4 and 8 to get 12.
\frac{-6x^{2}-8x}{-6}=\frac{12}{-6}
Divide both sides by -6.
x^{2}+\left(-\frac{8}{-6}\right)x=\frac{12}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}+\frac{4}{3}x=\frac{12}{-6}
Reduce the fraction \frac{-8}{-6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{4}{3}x=-2
Divide 12 by -6.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-2+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-2+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{14}{9}
Add -2 to \frac{4}{9}.
\left(x+\frac{2}{3}\right)^{2}=-\frac{14}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{-\frac{14}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{\sqrt{14}i}{3} x+\frac{2}{3}=-\frac{\sqrt{14}i}{3}
Simplify.
x=\frac{-2+\sqrt{14}i}{3} x=\frac{-\sqrt{14}i-2}{3}
Subtract \frac{2}{3} from both sides of the equation.