Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-26 ab=1\times 48=48
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+48. To find a and b, set up a system to be solved.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Calculate the sum for each pair.
a=-24 b=-2
The solution is the pair that gives sum -26.
\left(x^{2}-24x\right)+\left(-2x+48\right)
Rewrite x^{2}-26x+48 as \left(x^{2}-24x\right)+\left(-2x+48\right).
x\left(x-24\right)-2\left(x-24\right)
Factor out x in the first and -2 in the second group.
\left(x-24\right)\left(x-2\right)
Factor out common term x-24 by using distributive property.
x^{2}-26x+48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 48}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 48}}{2}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-192}}{2}
Multiply -4 times 48.
x=\frac{-\left(-26\right)±\sqrt{484}}{2}
Add 676 to -192.
x=\frac{-\left(-26\right)±22}{2}
Take the square root of 484.
x=\frac{26±22}{2}
The opposite of -26 is 26.
x=\frac{48}{2}
Now solve the equation x=\frac{26±22}{2} when ± is plus. Add 26 to 22.
x=24
Divide 48 by 2.
x=\frac{4}{2}
Now solve the equation x=\frac{26±22}{2} when ± is minus. Subtract 22 from 26.
x=2
Divide 4 by 2.
x^{2}-26x+48=\left(x-24\right)\left(x-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 24 for x_{1} and 2 for x_{2}.
x ^ 2 -26x +48 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 26 rs = 48
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 13 - u s = 13 + u
Two numbers r and s sum up to 26 exactly when the average of the two numbers is \frac{1}{2}*26 = 13. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(13 - u) (13 + u) = 48
To solve for unknown quantity u, substitute these in the product equation rs = 48
169 - u^2 = 48
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 48-169 = -121
Simplify the expression by subtracting 169 on both sides
u^2 = 121 u = \pm\sqrt{121} = \pm 11
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =13 - 11 = 2 s = 13 + 11 = 24
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.