Solve for n
n=\frac{x\left(x-2\right)}{2}
Solve for x (complex solution)
x=\sqrt{2n+1}+1
x=-\sqrt{2n+1}+1
Solve for x
x=\sqrt{2n+1}+1
x=-\sqrt{2n+1}+1\text{, }n\geq -\frac{1}{2}
Graph
Share
Copied to clipboard
-2x-2n=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2n=-x^{2}+2x
Add 2x to both sides.
-2n=2x-x^{2}
The equation is in standard form.
\frac{-2n}{-2}=\frac{x\left(2-x\right)}{-2}
Divide both sides by -2.
n=\frac{x\left(2-x\right)}{-2}
Dividing by -2 undoes the multiplication by -2.
n=-\frac{x\left(2-x\right)}{2}
Divide x\left(2-x\right) by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}