Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+37=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 37}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 37 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 37}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-148}}{2}
Multiply -4 times 37.
x=\frac{-\left(-2\right)±\sqrt{-144}}{2}
Add 4 to -148.
x=\frac{-\left(-2\right)±12i}{2}
Take the square root of -144.
x=\frac{2±12i}{2}
The opposite of -2 is 2.
x=\frac{2+12i}{2}
Now solve the equation x=\frac{2±12i}{2} when ± is plus. Add 2 to 12i.
x=1+6i
Divide 2+12i by 2.
x=\frac{2-12i}{2}
Now solve the equation x=\frac{2±12i}{2} when ± is minus. Subtract 12i from 2.
x=1-6i
Divide 2-12i by 2.
x=1+6i x=1-6i
The equation is now solved.
x^{2}-2x+37=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-2x+37-37=-37
Subtract 37 from both sides of the equation.
x^{2}-2x=-37
Subtracting 37 from itself leaves 0.
x^{2}-2x+1=-37+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-36
Add -37 to 1.
\left(x-1\right)^{2}=-36
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-36}
Take the square root of both sides of the equation.
x-1=6i x-1=-6i
Simplify.
x=1+6i x=1-6i
Add 1 to both sides of the equation.
x ^ 2 -2x +37 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 2 rs = 37
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1 - u s = 1 + u
Two numbers r and s sum up to 2 exactly when the average of the two numbers is \frac{1}{2}*2 = 1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1 - u) (1 + u) = 37
To solve for unknown quantity u, substitute these in the product equation rs = 37
1 - u^2 = 37
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 37-1 = 36
Simplify the expression by subtracting 1 on both sides
u^2 = -36 u = \pm\sqrt{-36} = \pm 6i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1 - 6i s = 1 + 6i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.