Solve for x
x = \frac{\sqrt{37} + 9}{2} \approx 7.541381265
x = \frac{9 - \sqrt{37}}{2} \approx 1.458618735
Graph
Share
Copied to clipboard
x^{2}-2x+3-7x=-8
Subtract 7x from both sides.
x^{2}-9x+3=-8
Combine -2x and -7x to get -9x.
x^{2}-9x+3+8=0
Add 8 to both sides.
x^{2}-9x+11=0
Add 3 and 8 to get 11.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 11}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 11}}{2}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-44}}{2}
Multiply -4 times 11.
x=\frac{-\left(-9\right)±\sqrt{37}}{2}
Add 81 to -44.
x=\frac{9±\sqrt{37}}{2}
The opposite of -9 is 9.
x=\frac{\sqrt{37}+9}{2}
Now solve the equation x=\frac{9±\sqrt{37}}{2} when ± is plus. Add 9 to \sqrt{37}.
x=\frac{9-\sqrt{37}}{2}
Now solve the equation x=\frac{9±\sqrt{37}}{2} when ± is minus. Subtract \sqrt{37} from 9.
x=\frac{\sqrt{37}+9}{2} x=\frac{9-\sqrt{37}}{2}
The equation is now solved.
x^{2}-2x+3-7x=-8
Subtract 7x from both sides.
x^{2}-9x+3=-8
Combine -2x and -7x to get -9x.
x^{2}-9x=-8-3
Subtract 3 from both sides.
x^{2}-9x=-11
Subtract 3 from -8 to get -11.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-11+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-11+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{37}{4}
Add -11 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{37}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{37}}{2} x-\frac{9}{2}=-\frac{\sqrt{37}}{2}
Simplify.
x=\frac{\sqrt{37}+9}{2} x=\frac{9-\sqrt{37}}{2}
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}