Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{x^{2}+3q^{2}-b^{2}-2q}{2x}\text{, }&x\neq 0\\n\in \mathrm{C}\text{, }&\left(q=\frac{\sqrt{3b^{2}+1}+1}{3}\text{ or }q=\frac{-\sqrt{3b^{2}+1}+1}{3}\right)\text{ and }x=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\frac{x^{2}+3q^{2}-b^{2}-2q}{2x}\text{, }&x\neq 0\\n\in \mathrm{R}\text{, }&\left(q=\frac{\sqrt{3b^{2}+1}+1}{3}\text{ or }q=\frac{-\sqrt{3b^{2}+1}+1}{3}\right)\text{ and }x=0\end{matrix}\right.
Solve for b (complex solution)
b=-\sqrt{x^{2}-2nx+3q^{2}-2q}
b=\sqrt{x^{2}-2nx+3q^{2}-2q}
Solve for b
b=\sqrt{x^{2}-2nx+3q^{2}-2q}
b=-\sqrt{x^{2}-2nx+3q^{2}-2q}\text{, }x\leq -\sqrt{n^{2}-3q^{2}+2q}+n\text{ or }x\geq \sqrt{n^{2}-3q^{2}+2q}+n\text{ or }\left(n>-\sqrt{-\left(2q-3q^{2}\right)}\text{ and }q\geq \frac{2}{3}\text{ and }|n|<\sqrt{-\left(2q-3q^{2}\right)}\right)\text{ or }\left(n>-\sqrt{-\left(2q-3q^{2}\right)}\text{ and }q\leq 0\text{ and }|n|<\sqrt{-\left(2q-3q^{2}\right)}\right)\text{ or }\left(q\leq 0\text{ and }|n|\leq \sqrt{-\left(2q-3q^{2}\right)}\right)\text{ or }\left(q\geq \frac{2}{3}\text{ and }|n|\leq \sqrt{-\left(2q-3q^{2}\right)}\right)
Graph
Share
Copied to clipboard
x^{2}-2nx+3q^{2}-b^{2}-2q=0
Combine -b and b to get 0.
-2nx+3q^{2}-b^{2}-2q=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2nx-b^{2}-2q=-x^{2}-3q^{2}
Subtract 3q^{2} from both sides.
-2nx-2q=-x^{2}-3q^{2}+b^{2}
Add b^{2} to both sides.
-2nx=-x^{2}-3q^{2}+b^{2}+2q
Add 2q to both sides.
\left(-2x\right)n=2q-3q^{2}+b^{2}-x^{2}
The equation is in standard form.
\frac{\left(-2x\right)n}{-2x}=\frac{2q-3q^{2}+b^{2}-x^{2}}{-2x}
Divide both sides by -2x.
n=\frac{2q-3q^{2}+b^{2}-x^{2}}{-2x}
Dividing by -2x undoes the multiplication by -2x.
n=-\frac{2q-3q^{2}+b^{2}-x^{2}}{2x}
Divide -x^{2}-3q^{2}+b^{2}+2q by -2x.
x^{2}-2nx+3q^{2}-b^{2}-2q=0
Combine -b and b to get 0.
-2nx+3q^{2}-b^{2}-2q=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2nx-b^{2}-2q=-x^{2}-3q^{2}
Subtract 3q^{2} from both sides.
-2nx-2q=-x^{2}-3q^{2}+b^{2}
Add b^{2} to both sides.
-2nx=-x^{2}-3q^{2}+b^{2}+2q
Add 2q to both sides.
\left(-2x\right)n=2q-3q^{2}+b^{2}-x^{2}
The equation is in standard form.
\frac{\left(-2x\right)n}{-2x}=\frac{2q-3q^{2}+b^{2}-x^{2}}{-2x}
Divide both sides by -2x.
n=\frac{2q-3q^{2}+b^{2}-x^{2}}{-2x}
Dividing by -2x undoes the multiplication by -2x.
n=-\frac{2q-3q^{2}+b^{2}-x^{2}}{2x}
Divide -x^{2}-3q^{2}+b^{2}+2q by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}