Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-12x^{2}+36=0
Combine x^{2} and -13x^{2} to get -12x^{2}.
-12x^{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-36}{-12}
Divide both sides by -12.
x^{2}=3
Divide -36 by -12 to get 3.
x=\sqrt{3} x=-\sqrt{3}
Take the square root of both sides of the equation.
-12x^{2}+36=0
Combine x^{2} and -13x^{2} to get -12x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-12\right)\times 36}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, 0 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-12\right)\times 36}}{2\left(-12\right)}
Square 0.
x=\frac{0±\sqrt{48\times 36}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{0±\sqrt{1728}}{2\left(-12\right)}
Multiply 48 times 36.
x=\frac{0±24\sqrt{3}}{2\left(-12\right)}
Take the square root of 1728.
x=\frac{0±24\sqrt{3}}{-24}
Multiply 2 times -12.
x=-\sqrt{3}
Now solve the equation x=\frac{0±24\sqrt{3}}{-24} when ± is plus.
x=\sqrt{3}
Now solve the equation x=\frac{0±24\sqrt{3}}{-24} when ± is minus.
x=-\sqrt{3} x=\sqrt{3}
The equation is now solved.