Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-0,2x-1,7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0,2\right)±\sqrt{\left(-0,2\right)^{2}-4\left(-1,7\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -0,2 for b, and -1,7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0,2\right)±\sqrt{0,04-4\left(-1,7\right)}}{2}
Square -0,2 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0,2\right)±\sqrt{0,04+6,8}}{2}
Multiply -4 times -1,7.
x=\frac{-\left(-0,2\right)±\sqrt{6,84}}{2}
Add 0,04 to 6,8 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0,2\right)±\frac{3\sqrt{19}}{5}}{2}
Take the square root of 6,84.
x=\frac{0,2±\frac{3\sqrt{19}}{5}}{2}
The opposite of -0,2 is 0,2.
x=\frac{3\sqrt{19}+1}{2\times 5}
Now solve the equation x=\frac{0,2±\frac{3\sqrt{19}}{5}}{2} when ± is plus. Add 0,2 to \frac{3\sqrt{19}}{5}.
x=\frac{3\sqrt{19}+1}{10}
Divide \frac{1+3\sqrt{19}}{5} by 2.
x=\frac{1-3\sqrt{19}}{2\times 5}
Now solve the equation x=\frac{0,2±\frac{3\sqrt{19}}{5}}{2} when ± is minus. Subtract \frac{3\sqrt{19}}{5} from 0,2.
x=\frac{1-3\sqrt{19}}{10}
Divide \frac{1-3\sqrt{19}}{5} by 2.
x=\frac{3\sqrt{19}+1}{10} x=\frac{1-3\sqrt{19}}{10}
The equation is now solved.
x^{2}-0,2x-1,7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-0,2x-1,7-\left(-1,7\right)=-\left(-1,7\right)
Add 1,7 to both sides of the equation.
x^{2}-0,2x=-\left(-1,7\right)
Subtracting -1,7 from itself leaves 0.
x^{2}-0,2x=1,7
Subtract -1,7 from 0.
x^{2}-0,2x+\left(-0,1\right)^{2}=1,7+\left(-0,1\right)^{2}
Divide -0,2, the coefficient of the x term, by 2 to get -0,1. Then add the square of -0,1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0,2x+0,01=1,7+0,01
Square -0,1 by squaring both the numerator and the denominator of the fraction.
x^{2}-0,2x+0,01=1,71
Add 1,7 to 0,01 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0,1\right)^{2}=1,71
Factor x^{2}-0,2x+0,01. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0,1\right)^{2}}=\sqrt{1,71}
Take the square root of both sides of the equation.
x-0,1=\frac{3\sqrt{19}}{10} x-0,1=-\frac{3\sqrt{19}}{10}
Simplify.
x=\frac{3\sqrt{19}+1}{10} x=\frac{1-3\sqrt{19}}{10}
Add 0,1 to both sides of the equation.