Solve for y
\left\{\begin{matrix}y=-\frac{z}{2+x-x^{2}}\text{, }&z\neq 0\text{ and }x\neq -1\text{ and }x\neq 2\\y\neq 0\text{, }&\left(x=2\text{ or }x=-1\right)\text{ and }z=0\end{matrix}\right.
Solve for x (complex solution)
x=\frac{\sqrt{y\left(9y+4z\right)}+y}{2y}
x=\frac{-\sqrt{y\left(9y+4z\right)}+y}{2y}\text{, }y\neq 0
Solve for x
x=\frac{\sqrt{y\left(9y+4z\right)}+y}{2y}
x=\frac{-\sqrt{y\left(9y+4z\right)}+y}{2y}\text{, }\left(z\leq -\frac{9y}{4}\text{ and }y<0\right)\text{ or }\left(z\geq -\frac{9y}{4}\text{ and }y>0\right)\text{ or }\left(y\neq 0\text{ and }z=-\frac{9y}{4}\right)
Share
Copied to clipboard
yx^{2}-z+y\left(-2\right)=xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
yx^{2}-z+y\left(-2\right)-xy=0
Subtract xy from both sides.
yx^{2}+y\left(-2\right)-xy=z
Add z to both sides. Anything plus zero gives itself.
\left(x^{2}-2-x\right)y=z
Combine all terms containing y.
\left(x^{2}-x-2\right)y=z
The equation is in standard form.
\frac{\left(x^{2}-x-2\right)y}{x^{2}-x-2}=\frac{z}{x^{2}-x-2}
Divide both sides by x^{2}-2-x.
y=\frac{z}{x^{2}-x-2}
Dividing by x^{2}-2-x undoes the multiplication by x^{2}-2-x.
y=\frac{z}{\left(x-2\right)\left(x+1\right)}
Divide z by x^{2}-2-x.
y=\frac{z}{\left(x-2\right)\left(x+1\right)}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}